

“A lazy person will end up poor.”

Pointers

Pointers are a gift to C programmers. One of the important uses of pointers is the
dynamic memory allocation. So pointers work with ‘memory’. It necessitates the need to
understand jargons related to ‘memory’ and pointer implementations.

12.1 Memory Overwrite
Whenever we write data into memory, we’re actually overwriting the existing data. If we

“owned” that memory and if we overwrite it, then there won’t be any problem. Otherwise, we
would lose any valid data that exist there before. So we must avoid memory overwrite and we
should use only the allocated memory.

12.2 Array/Buffer Overflow
 If we copy or insert data more into an array of limited size, it is referred as array
overflow. Look at the following code:

char var1[10];
char var2[5] = "Hello"; /* '\0' is not added as size

is given as 5*/
strcpy(var1, var2);

Here, we can find that var2 (“Hello”) is not terminated with a Null terminator (‘\0’). So

when we copy var2 to var1 using strcpy(), the strcpy() routine will copy all the
character to var2 until it finds ‘\0’ in memory. So array overflow may result in memory
overwrite!

12.3 Memory Leak
 When you repeatedly allocate memory without freeing it, such that all available memory
leaks away, it is called as memory leak. Too much of memory leak would crash TC, DOS or
Windows. So it is more dangerous. For example, the following code would result in memory
leak.

#include <stdlib.h>
#include <stdio.h>
int main(void)
{
 int x = 1;

12

 A to Z of C

35

 int *ptr = malloc(sizeof(int));
 ptr = &x;
 x = 2;
 *ptr = 3;
 return(0);
}

Here, the variable ptr is first initialized with malloc() and once again with address of

x. So the value that was returned by malloc() is definitely lost. Now we have memory leak
even if we call free() function, because the free() function must be called with the exact
value of the pointer returned by malloc().

The remedy for memory leak is to declare pointer constant. That is,

int *const ptr = malloc(sizeof(int));
ptr = &x; /* compiler error */

Now, the compiler will generate error. So, we are in safe from memory leak problem.

12.4 Multidimensional array implementation
For the sake of simplicity, let’s see two-dimensional implementation only. All of these

techniques can also be extended to three or more dimensions.

12.4.1 Version 1
We may allocate an array of pointers, and then initialize each pointer to a dynamically-

allocated row.

 int **array = (int **)malloc(rows * sizeof(int *));
 for(i = 0; i < rows; ++i)
 array[i] = (int *)malloc(columns * sizeof(int));

 I personally prefer this implementation.

12.4.2 Version 2
You may keep the array's contents contiguous with pointer arithmetic as:

 int **array = (int **)malloc(rows * sizeof(int *));
 array[0] = (int *)malloc(rows * columns * sizeof(int));
 for(i = 1; i < rows; ++i)
 array[i] = array[0] + i * columns;

12.4.3 Version 3
You may also simulate a two-dimensional array with a single, dynamically-allocated one-

dimensional array.
 int *array = (int *)malloc(rows * columns * sizeof(int));

A to Z of C

36

12.4.4 Version 4
Here is another version which uses pointers to arrays.

 int (*array)[NO_OF_COLUMNS] =
 (int (*)[NO_OF_COLUMNS])malloc(rows * sizeof(*array));

12.5 Linked List
 Linked list is one of the important applications of pointer concepts. Here is the program
to create / append, display & reverse a linked list.

#include <alloc.h>
#include <stdio.h>

typedef struct node LNKLIST;

struct node
{
 int data;
 LNKLIST *next;
};

int main(void)
{
 LNKLIST *start = NULL, *p, *q, *temp;
 char opt;
 do
 {
 printf("\n\t\t Menu" \
 "\n\t\t ~~~~" \
 "\n\t 1. Create/Append Linked List"\
 "\n\t 2. Reverse Linked List" \
 "\n\t 3. Display Linked List" \
 "\n\t 4. Exit" \
 "\n Enter your choice "
);
 opt = getchar();
 flushall();

 switch(opt)
 {
 case '1': /* Create/append Linked List */
 do
 {
 p = start;
 /* Traverse upto the last node to append */

 A to Z of C

37

 while(p->next!=NULL)
 p = p->next;
 q = (LNKLIST*)malloc(sizeof(LNKLIST));
 printf("\nEnter the data: ");
 scanf("%d", &q->data);
 q->next = NULL;
 if (start==NULL)
 start = q;
 else
 p->next = q;
 printf("Wanna continue? ");
 } while(tolower(getchar())=='y');
 break;

 case '2': /* Reverse Linked List */
 p = start;
 q = p->next;
 while(q!=NULL)
 {
 temp = q->next;
 q->next = p;
 p = q;
 q = temp;
 }
 start->next = NULL;
 start = p;
 break;

 case '3': /* Print linked list as [Data | Address] */
 p = start;
 printf("\nstart =%u ", start);
 while(p!=NULL)
 {
 printf("-> [%d | %u]", p->data, p->next);
 p = p->next;
 }
 getchar();
 }
 } while(opt!='4');
 return(0);
} /*--main()----------*/

