

“Remaining calm solves great problems.”

Processor

“Processor” and CPU (Central Processing Unit) refers the same—the heart of the
computer. It is a chip that is responsible for processing instructions.

17.1 Processors
 The computing world came across so many processors. Each of the processors has its
own merits and demerits. The following table shows few of the known processors and its
characteristics.

Date

Introduced

Processor

Coprocessor

Internal
Register

size
(bit)

Data
I/O
Bus

width
(bit)

Memory
Address

Bus
width
(bit)

Maximum
Memory

June, 1978
June, 1979
Feb, 1982
June, 1988
April, 1989
March, 1993
May, 1997

8086
8088
286(80286)
386 SX
486 DX
Pentium
Pentium II

8087
8087
80287
80387 SX
Built-in
Built-in
Built-in

16
16
16
32
32
32
32

16
8
16
16
32
64
64

20
20
24
24
32
32
36

1MB
1MB
16MB
16MB
4MB
4MB
64MB

17.2 Processor Modes

 When we look into the history of processors, two processors marked remarkable changes
in computing, namely 8088 and 286. These processors are actually responsible for the so called
‘processor modes’.

17.2.1 Real Mode

 8088 processor is sometimes referred as 16-bit, because it could execute only 16-bit and
could address only 1MB of memory instruction set using 16-bit registers. The processor
introduced after 8088, namely 286 was also 16-bit, but it was faster than 8088. So these
processors (8088 and 286) can handle only 16-bit software and operating systems like Turbo
C++3.0, Windows 3.X, etc.

17

A to Z of C

66

 These processors had some drawbacks:

1. Normally didn’t support multitasking
2. Had no protection for memory overwriting. So, there is even a chance to erase

the operating system present in memory. In other words, ‘memory crash’ is
unavoidable.

This 16bit instruction mode of 8088 and 286 processors are commonly known as ‘Real

Mode’.

 Note
TC++3.0 is 16-bit. Therefore it is not preferred for
commercial applications.

17.2.2 Protected Mode
 The first 32-bit processor namely 386, has a built-in mechanism to avoid ‘memory crash’.
So this 32-bit mode is commonly known as ‘protected mode’. It also supports multitasking.
UNIX, OS/2 and Windows NT are the pure 32-bit operating systems. 386 processor are also
backward compatible, which means it could even handle 16-bit instructions and could even run
on real mode.

17.2.3 Virtual Real Mode
 When 386 processor was introduced, programmers were still using 16-bit instructions
(real mode) on 386 because 386 executes the 16-bit application much faster. They also resisted
32-bit operating system and 32-bit applications. So when Microsoft tried to introduce Windows
95, a 32-bit operating system, it added a backward compatibility and introduced a mode called
‘Virtual real mode’. That is, the programmer may think that it is working under real mode, but it
is actually protected from hazardous effects.

17.3 Processor Type
 Each processor has its own unique charactersitcs. When we check for its unique
characteristics, we can find whether our processor is 286 or 386 or 586(Pentium). This logic is
used to find out the processor type. Processor type is also referred as CPU Id.

17.3.1 C program to find processor type
 Finding out the processor type using C program is difficult. Any how Gilles Kohl came
out with a tough C code that can determine processor type (386 or 486).

int Test386(void)
{
 char far *p = "\270\001pP\235\234X\313";

 A to Z of C

67

 return!!(((int(far*)())p)
 ()&((0x88 + ((286 | 386)*4))<<4));
} /*--Test386()--------*/

int main(void)
{
 printf("Running on a %s\n", Test386() ? "386" : "286");
 return(0);
} /*--main()-----*/

If the code is run on a machine that don’t have 386 or 486, you may get a wrong output.

For better results we must use Assembly. (We can call it as a limitation of C language!).

17.3.2 Assembly routine to find processor type
 The following Assembly routine is by Alexander Russell. Using this routine, we can
find out our processor type and coprocessor support. This routine can be called from C i.e. you
can link the object code with C program.

17.3.2.1 Assembly routines

To understand this Assembly module, read the comments provided in comment line.

;--
; Hardware detection module
;
; Compile with Tasm.
; C callable.
;--

.model medium, c

 global x_processor :proc
 global x_coprocessor :proc

LOCALS
.386

CPUID MACRO
 db 0fh, 0A2h
ENDM

 .code

i86 equ 0
i186 equ 1
i286 equ 2

A to Z of C

68

i386 equ 3
i486 equ 4
i586 equ 5

;---
; PC Processor detection routine
;
; C callable as:
; unsigned int x_processor();
;
;
x_processor PROC
.8086
 pushf ; Save flags

 xor ax,ax ; Clear AX
 push ax ; Push it on the stack
 popf ; Zero the flags
 pushf ; Try to zero bits 12-15
 pop ax ; Recover flags
 and ax,0F000h ; If bits 12-15 are 1 => i86 or i286
 cmp ax,0F000h
 jnz @@not_86_186
 jmp @@is_86_186

@@not_86_186:

 mov ax,07000h ; Try to set bits 12-14
 push ax
 popf
 pushf
 pop ax
 and ax,07000h ; If bits 12-14 are 0 => i286
 jnz is_not_286
 jmp is_286

is_not_286:

 ; its a 386 or higher

 ; check for 386 by attempting to toggle EFLAGS register
 ; Alignment check bit which can't be changed on a 386
.386
 cli
 pushfd
 pushfd

 A to Z of C

69

 pop eax
 mov ebx, eax
 xor eax, 040000h ; toggle bit 18
 push eax
 popfd
 pushfd
 pop eax
 popfd
 sti
 and eax, 040000h ; clear all but bit 18
 and ebx, 040000h ; same thing
 cmp eax, ebx
 jne @@moretest
 mov ax, i386
 jmp short @@done

 ; is it a 486 or 586 or higher

@@moretest:

 ; check for a 486 by trying to toggle the EFLAGS ID bit
 ; this isn't a foolproof check

 cli
 pushfd
 pushfd
 pop eax
 mov ebx, eax
 xor eax, 0200000h ; toggle bit 21
 push eax
 popfd
 pushfd
 pop eax
 popfd
 sti
 and eax, 0200000h ; clear all but bit 21
 and ebx, 0200000h ; same thing
 cmp eax, ebx
 jne @@moretest2
 mov ax, i486
 jmp short @@done

@@moretest2:

 ; OK it was probably a 486, but let’s double check

 mov eax, 1

A to Z of C

70

 CPUID
 and eax, 0f00h
 shr eax, 8

 mov ebx, eax
 mov ax, i586
 cmp ebx, 5
 je @@done ; it was a pentium

 ; it wasn't a 586 so just report the ID

 mov eax, ebx
 and eax, 0ffffh

 jmp short @@done

.8086

is_286:
 mov ax,i286 ; We have a 286
 jmp short @@done

@@is_86_186: ; Determine whether i86 or i186
 push cx ; save CX
 mov ax,0FFFFh ; Set all AX bits
 mov cl,33 ; Will shift once on 80186
 shl ax,cl ; or 33 x on 8086
 pop cx
 jnz is_186 ; 0 => 8086/8088
is_86:
 mov ax,i86
 jmp short @@done
is_186:
 mov ax,i186
@@done:
 popf

 ret

x_processor endp

.386

 .8086
;--
; PC Numeric coprocessor detection routine
;

 A to Z of C

71

; C callable as:
; unsigned int x_coprocessor();
;
; Returns 1 if coprocessor found, zero otherwise

x_coprocessor PROC

 LOCAL control:word

 fninit ; try to initialize the copro.
 mov [control],0 ; clear control word variable
 fnstcw control ; put control word in memory
 mov ax,[control] ;
 cmp ah,03h ; do we have a coprocessor ?
 je @@HaveCopro ; jump if yes!
 xor ax,ax ; return 0 since nothing found
 jmp short @@Done
@@HaveCopro:
 mov ax,1
@@Done:
 ret

x_coprocessor endp

end
;---------------------------

17.3.2.2 Calling C program

#pragma –mm /* force to medium memory model */

int main(void)
{
 int i;
 static char *cpu_str[]=
 {
 "i86",
 "i186",
 "i286",
 "i386",
 "i486",
 "i586",
 "i686"
 };

 i = x_processor();

A to Z of C

72

 if (i > 6)
 i = 6;

 printf("Processor type: %s CoPro : %s\n", cpu_str[i],
 x_coprocessor() ? "Yes" : "No");
 return(0);
} /*--main()----------*/

17.3.3 Another Assembly routine

 The success of the above Assembly code by Alexander Russell depends on the code that
the compiler produces. So if your compiler doesn’t produce the “right” code, you may not get
proper results. Here I provide another Assembly code to find out processor type. It is by Edward
J. Beroset. All these codes use the same logic i.e. checking the unique characteristics of a
processor.
 This module contains a C callable routine which returns a 16-bit integer (in AX) which
indicates the type of CPU on which the program is running. The lower eight bits (AL) contain a
number corresponding to the family number (e.g. 0 = 8086, 1 = 80186, 2 = 80286, etc.). The
higher eight bits (AH) contain a collection of bit flags which are defined below.

; cpuid.asm
;
% .MODEL memodel,C ;Add model support via command
 ;line macros, e.g.
 ;MASM /Dmemodel=LARGE,
 ;TASM /Dmemodel=SMALL, etc.
 .8086
 PUBLIC cpu_id

;
; using MASM 6.11 Ml /c /Fl CPUID.ASM
;
; using TASM 4.00 TASM CPUID.ASM
;
; using older assemblers, you may have to use the following equate
; and eliminate the .586 directive
;
;CPUID equ "dw 0a20fh"
;
; bit flags for high eight bits of return value
;
HAS_NPU equ 01h
IS386_287 equ 02h
IS386SX equ 04h
CYRIX equ 08h

 A to Z of C

73

NEC equ 10h
NEXGEN equ 20h
AMD equ 40h
UMC equ 80h

 .code

cpu_id proc
 push bx
 push cx
 push dx
 push bp
 mov bp,sp
 xor dx,dx ; result = 0 (UNKNOWN)
;**
; The Cyrix test
;
; Cyrix processors do not alter the AF (Aux carry) bit when
; executing an XOR. Intel CPUs (and, I think, all the others)
; clear the AF flag while executing an XOR AL,AL.
;
;**
TestCyrix:
 mov al,0fh ;
 aas ; set AF flag
 xor al,al ; only Cyrix leaves AF set
 aas ;
 jnc Test8086 ;
 or dh,CYRIX ; it's at least an 80386 clone
 jmp Test486 ;
;**
;
; The 80186 or under test
;
; On <80286 CPUs, the SP register was decremented *before* being
; pushed onto the stack. All later CPUs do it correctly.
;
;**
Test8086:
 push sp ; Q: is it an 8086, 80188, or
 pop ax ;
 cmp ax,bp ;
 je Test286 ; N: it's at least a 286
;**
; The V20/V30 test
;
; NEC's CPUs set the state of ZF (the Zero flag) correctly after

A to Z of C

74

; a MUL. Intel's CPUs do not -- officially the state of ZF is
; "undefined" after a MUL or IMUL.
;
;**
TestV20:
 xor al,al ; clear the zero flag
 mov al,1 ;
 mul al ;
 jnz Test186 ;
 or dh,NEC ; it's a V20 or a V30
;**
; The 80186 test
;
; On the 80186, shifts only use the five least significant bits,
; while the 8086 uses all 8, so a request to shift 32 bits will
; be requested as a shift of zero bits on the 80186.
;
;**
Test186:
 mov al,01h ;
 mov cl,32 ; shift right by 33 bits
 shr al,cl ;
 mov dl,al ; al = 0 for 86, al = 1 for 186
longTestNpu:
 jmp TestNpu ;

;**
; The 286 test
; Bits 12-15 (the top four) of the flags register are all set to
; 0's on a 286 and can't be set to 1's.
;
;**
Test286:
 .286
 mov dl,2 ; it's at least a 286
 pushf ; save the flags
 pop ax ; fetch 'em into AX
 or ah,0f0h ; try setting those high bits
 push ax ;
 popf ; run it through the flags reg
 pushf ;
 pop ax ; now check the results
 and ah,0F0h ; Q: are bits clear?
 jz longTestNpu ; Y: it's a 286

;**
; The 386 test

 A to Z of C

75

;
; The AC (Alignment Check) bit was introduced on the 486. This
; bit can't be toggled on the 386.
;
;**
Test386:
 .386
 mov dl,3 ; it's at least a 386
 pushfd ; assure enough stack space
 cli
 and sp, NOT 3 ; align stack to avoid AC fault
 pushfd ;
 pop cx ;
 pop ax ;
 mov bx,ax ; save a copy
 xor al,4 ; flip AC bit
 push ax ;
 push cx ;
 popfd ;
 pushfd ;
 pop cx ;
 pop ax ;
 and al,4 ;
 sti
 xor al,bl ; Q: did AC bit change?
 jnz Test486 ; N: it's a 386
 .386P
;**
; The 386SX test
;
; On the 386SX, the ET (Extension Type) bit of CR0 is permanently
; set to 1 and can't be toggled. On the 386DX this bit can be
; cleared.
;**
 mov eax,cr0
 mov bl,al ; save correct value
 and al,not 10h ; try clearing ET bit
 mov cr0,eax ;
 mov eax,cr0 ; read back ET bit
 xchg bl,al ; patch in the correct value
 mov cr0,eax ;
 test bl,10h ; Q: was bit cleared?
 jz TestNpu ; Y: it's a DX
 or dh,IS386SX ; N: it's probably an SX

;**

A to Z of C

76

; The 486 test
;
; Try toggling the ID bit in EFLAGS. If the flag can't be toggled,
; it's a 486.
;
; Note:
; This one isn't completely reliable -- I've heard that the NexGen
; CPU's don't make it through this one even though they have all
; the Pentium instructions.
;**
Test486:
 .486
 pushfd
 pop cx
 pop bx
 mov dl,4 ;
 mov ax,bx ;
 xor al,20h ; flip EFLAGS ID bit
 push ax ;
 push cx ;
 popfd ;
 pushfd ;
 pop cx ;
 pop ax ;
 and al,20h ; check ID bit
 xor al,bl ; Q: did ID bit change?
 jz TestNpu ; N: it's a 486

;**
; The Pentium+ tests
;
; First, we issue a CPUID instruction with EAX=0 to get back the
; manufacturer's name string. (We only check the first letter.)
;
;**
PentPlus:
 .586
 push dx ;
 xor eax,eax ;
 cpuid ;
 pop dx ;
 cmp bl,'G' ; Q: GenuineIntel?
 jz WhatPent ; Y: what kind?
 or dh,CYRIX ; assume Cyrix for now
 cmp bl,'C' ;
 jz WhatPent ;
 xor dh,(CYRIX OR AMD) ;

 A to Z of C

77

 cmp bl,'A' ;
 jz WhatPent ;
 xor dh,(AMD OR NEXGEN) ;
 cmp bl,'N' ;
 jz WhatPent ;
 xor dh,(NEXGEN OR UMC) ; assume it's UMC
 cmp bl,'U' ;
 jz WhatPent ;
 xor dh,UMC ; we don't know who made it!
;**
; The Pentium+ tests (part II)
;
; This test simply gets the family information via the CPUID
; instruction
;
;**
WhatPent:
 push edx ;
 xor eax,eax ;
 inc al ;
 cpuid ;
 pop edx ;
 and ah,0fh ;
 mov dl,ah ; put family code in DL

;**
; The NPU test
;
; We reset the NPU (using the non-wait versions of the instruction,of
; course!), put a non-zero value on the stack, then write the NPU
; status word to that stack location. Then we check for zero, which
; is what would be there if there were an NPU.
;
;**
TestNpu:
 .8087
 .8086
 mov sp,bp ; restore stack
 fninit ; init but don't wait
 mov ax,0EdEdh ;
 push ax ; put non-zero value on stack
 fnstsw word ptr [bp-2] ; save NPU status word
 pop ax ;
 or ax,ax ; Q: was status = 0?
 jnz finish ; N: no NPu
 or dh,HAS_NPU ; Y: has NPU

A to Z of C

78

;**
; The 386/287 combo test
;
; Since the 386 can be paired with either a 387 or 287, we check to
; see if the NPU believes that +infinity equals -infinity. The 387
; says they're equal, while the 287 doesn't.
;
;**
 cmp dl,3 ; Q: is CPU a 386?
 jnz finish ; N: no need to check
infinities
 fld1 ; load 1
 fldz ; load 0
 fdiv ; calculate infinity! (1/0)
 fld st ; duplicate it
 fchs ; change signs of top inf
 fcompp ; identical?
 push ax ;
 fstsw word ptr [bp-2] ;
 pop ax ;
 test ah,40h ; Q: does NPU say they're
equal?
 jz finish ; N: it's a 387
 or dh,IS386_287 ;
finish:
 mov ax,dx ; put our return value in place
 pop bp ; clean up stack
 pop dx ;
 pop cx ;
 pop bx ;

 ret ;
cpu_id endp

 END
;---------------------------

Exercises

 1. Write a program that can find the current mode of processor (i.e., Real / Protected /
Virtual Mode).

