

“Let your gentleness be evident to all.”

Sound Programming
with PC Speaker

Sound programming can be classified as with PC speaker and with sound blaster card. In

this chapter, let’s see sound programming with PC speaker.

23.1 Introduction
 Almost all systems have PC speaker. People who like to have digitized sound go for
MIDI card or sound blaster card. But for normal operations, it is enough to have PC speaker.

23.2 Programming PIT
 For sound programming with PC speakers, we must be aware of PIT (Programmable
Interval Timer) that is present on our microcomputer system. PIT or 8253 chip is an LSI
peripheral designed to permit easy implementation of timer. People from Electronics background
may be aware that Timer is the one which produces clock signals. And so PIT can be setup to
work as a one shot pulse generator, square wave generator or as rate generator. We can set the
PIT to supply the required frequency by supplying values ‘N’ to the port 43h.

 1.9 MHz
 Formula to calculate N =

 f

 where f is the required frequency

 The sequence of operations be:

i. Initialize PIT to accept divisor by OUTing B6h at 43h.
ii. OUT LSB of ‘N’ at 42h

iii. OUT MSB of ‘N’ at 42h

 Now the PIT will produce clock signals with the frequency ‘f’.

23.3 Producing Sound
 If we connect a timer with PC speaker, it will produce sound. We can connect PIT with
PC speakers to get the required sound. The output port of speaker is 61h. bit0 of port 61h is used
to enable timer to supply clock signal to speaker i.e. connects PIT with speaker.

23

 A to Z of C

103

 Now let’s write our own sound() and nosound() function to produce sound.

#define ON (1)
#define OFF (0)

/*--
 ChangeSpeaker - Turn speaker on or off. */

void ChangeSpeaker(int status)
{
 int portval;
 portval = inportb(0x61);
 if (status==ON)
 portval |= 0x03;
 else
 portval &=~ 0x03;
 outportb(0x61, portval);
} /*--ChangeSpeaker()----------*/

void Sound(int hertz)
{
 unsigned divisor = 1193180L / hertz;

 ChangeSpeaker(ON);

 outportb(0x43, 0xB6);
 outportb(0x42, divisor & 0xFF) ;
 outportb(0x42, divisor >> 8) ;
} /*--Sound()-----*/

void NoSound(void)
{
 ChangeSpeaker(OFF);
} /*--NoSound()------*/

int main(void)
{
 Sound(355);
 delay(1000);
 Sound(733);
 delay(1000);
 NoSound();
 return(0);
} /*--main()-------*/

 TC also has sound() and nosound() functions. If you don’t want to write your own
code, you can use those built-in functions.

A to Z of C

104

23.4 Notes & Frequencies
 You may want to know the frequencies of each note to produce the right sound. In
general, an octave is a doubling in frequency. There are twelve distinct tones in an octave. The
frequencies of higher octaves are just a multiple of frequencies for lower octaves. The note 'A'
below “middle C” is exactly 440Hz. Other notes may be calculated from this by using a simple
formula:

Frequency = 440 * 2(Offset / 12)

where Offset is the “distance” between note 'A' and the note in semitones.

Using the above formula, any part of the frequency table can be calculated. The following
program demonstrates this.

#include <math.h>
char *Note_Names[] =
 {
 "A",
 "B Flat",
 "B",
 "C",
 "C Sharp",
 "D",
 "E Flat",
 "E",
 "F",
 "F Sharp",
 "G",
 "G Sharp"
 };
int main(void)
{
 double frequency;
 int offset;
 for(offset=0; offset<13; ++offset)
 {
 frequency = 440.0 * pow(2.0, offset / 12.0);
 printf("The Frequency of %s is %f Hz\n",
 Note_Names[offset%12], frequency);
 }
 return(0);
} /*--main()--------*/

23.5 Piano Keys and Frequencies
 The following diagram shows the frequencies for a typical Piano.

 A to Z of C

105

A to Z of C

106

23.6 Piano Program
 The following is the code for a Piano program. The main idea here is you have to use port
60h to get a key, you should not use getch(). Since we are using port 60h, the keyboard buffer
won’t get cleared automatically. So we should clear the keyboard buffer very often to avoid
unnecessary beep sound that signals the keyboard buffer’s full status.

This program will provide you the opportunity to try 8 octaves. As the frequencies of
higher octaves are just a multiple of frequencies of lower octaves, I could have used a single
dimensional array notes[12]. But I have used a two dimensional array notes[7][12] to
avoid calculations and to increase the speed.

#define ESC (129)

#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 void ClrKeyBrdBuffer();
 float notes[7][12] =
 {
 { 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185.0,
 196.0, 207.65, 220.0, 227.31, 246.96 },
 { 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.63,
 392.0, 415.3, 440.0, 454.62, 493.92 },
 { 523.25, 554.37, 587.33, 622.25, 659.26, 698.46, 739.99,
 783.99, 830.61, 880.0, 909.24, 987.84 },
 { 1046.5, 1108.73, 1174.66, 1244.51, 1328.51, 1396.91, 1479.98,
 1567.98, 1661.22, 1760.0, 1818.48, 1975.68 },
 { 2093.0, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83, 2959.96,
 3135.96, 3322.44, 3520.0, 3636.96, 3951.36 },
 { 4186.0, 4434.92, 4698.64, 4978.04, 5274.04, 5587.86, 5919.92,
 6271.92, 6644.88, 7040.0, 7273.92, 7902.72 },
 { 8372.0, 8869.89, 9397.28,9956.08,10548.08,11175.32, 11839.84,
 12543.84, 13289.76, 14080.0, 14547.84, 15805.44 }
 };
 int n, i, p, q, octave = 2,
 note[] = { 1, 3, 99, 6, 8, 10, 99, 13, 15, 99, 18, 0, 2, 4, 5, 7,
 9, 11, 12, 14, 16, 17 };
 /* keys[]="awsedftgyhujkolp;']" <- for note[] */
 clrscr();
 printf("Piano for A to Z of C \n\n"
 "Note-> C Df D Ef E F Fs G Af A Bf B C Df D Ef E F Fs \n"
 "Keys-> a w s e d f t g y h u j k o l p ; '] \n\n"
 "Octave-> 1 2 3 4 5 6 7 8 \n\n"

 A to Z of C

107

 "Quit-> ESC \n");
 while((n=inportb(0x60)) != ESC)
 {
 ClrKeyBrdBuffer();
 p = 2; /*dummy*/
 if (n>=2&&n<=8)
 octave = n-2;
 else
 switch(n)
 {
 case 79:
 case 80:
 case 81: octave = n-79;
 break;
 case 75:
 case 76:
 case 77: octave = n-72;
 break;
 case 71: octave = 6;
 }
 if (n>=17&&n<=27)
 p = n-17;
 else if (n>=30&&n<=40)
 p = n-19;
 p = note[p];
 if (p>=0&&p<=21)
 sound((int)notes[octave][p]);
 if (n>136)
 nosound();
 }
 printf("Quiting...");
 getch();
 return(0);
} /*--main()----------*/

void ClrKeyBrdBuffer(void)
{
 outportb(0x20, 0x20); /* reset PIC */
 while(bioskey(1)) /* read all chars until it empty */
 bioskey(0);
} /*--ClrKeyBrd()------*/

A to Z of C

108

Exercise

1. Using program find out the frequency and delay used for ordinary beep sound that is
produced by printf("\a");. Do not use any gadgets or Trial and Error Techniques.

Suggested Projects
 1. Write software that plays MIDI files through PC speaker.

