
“Those with knowledge have great strength.”

Developing a new
language / writing
compiler

Believe it or not, developing a new language is one of the easiest things in programming

as we’ve got so many tools for developing compliers.

48.1 Secrets
Developing a new language refers to developing new grammar. Grammar refers to rules

of the language.
For example, following is the part of grammar for enum of C:

enum-specifier:

enum identifer { enumerator-list}
enum identifer

enumerator-list:

enumerator
enumerator-list, enumerator

enumerator:

identifier
identifer = constant-expression

So you need to write your new language's grammar first. By the way, you must decide

the data types, keywords and operators too. After preparing grammar you may need to produce a
complier for your language to emphasize the merits of your language.

48.2 Writing a compiler
48.2.1 Compiler

First of all we must know what a compiler is and how it differs from Assembler and Linker.

• Compiler is the one which produces assembly listing (.ASM files) for a given file in high
level language. In its first phase, it checks for the syntax and correctness.

• Assembler is the one which produces object (.OBJ) file for a given Assembly file.

48

 A to Z of C

383

• Linker is the one which links various object (.OBJ) files and produces executable files
(.EXE or .COM).

 Nowadays, we have certain integrated compilers that are able to produce the executable
files directly for a given file in high-level language

48.2.2 Compiler Secrets
 Let’s see how our Turbo C compiler works! Understanding the functioning of an existing
compiler will help us to write our own compiler.
 Let’s see how our hello.c program is been compiled by Turbo C.

Assembly code

Intermediate Code

Optimized Intermediate Code

Preprocessor

Lexical analyzer

Symbol Table

Pass 1

Pass 2

Pass 3

Pass 4

Request tokens

“Useable” token

Code Generator

Optimizer

Code Organizer

Source code in
High level
language

Parser

A to Z of C

384

int main(void)
{
 char *str = "Hello!\n";
 printf("%s", str);
 return(0);
}

 Compile the hello.c program using command line compiler tcc with -S switch to get
assembly listing as

 c:>tcc –S hello.c

 It will produce hello.asm file.

 ifndef ??version
?debug macro
 endm
$comm macro name,dist,size,count
 comm dist name:BYTE:count*size
 endm
 else
$comm macro name,dist,size,count
 comm dist name[size]:BYTE:count
 endm
 endif
 ?debug S "hello.c"
 ?debug C E9EA402E2B0768656C6C6F2E63
_TEXT segment byte public 'CODE'
_TEXT ends
DGROUP group _DATA,_BSS
 assume cs:_TEXT,ds:DGROUP
_DATA segment word public 'DATA'
d@ label byte
d@w label word
_DATA ends
_BSS segment word public 'BSS'
b@ label byte
b@w label word
_BSS ends
_TEXT segment byte public 'CODE'
 ;
 ; int main(void)
 ;
 assume cs:_TEXT
_main proc near
 push bp
 mov bp,sp

 A to Z of C

385

 sub sp,2
 ;
 ; {
 ; char *str = "Hello!\n";
 ;
 mov word ptr [bp-2],offset DGROUP:s@
 ;
 ; printf("%s", str);
 ;
 push word ptr [bp-2]
 mov ax,offset DGROUP:s@+8
 push ax
 call near ptr _printf
 pop cx
 pop cx
 ;
 ; return(0);
 ;
 xor ax,ax
 jmp short @1@58
@1@58:
 ;
 ; }
 ;
 mov sp,bp
 pop bp
 ret
_main endp
 ?debug C E9
_TEXT ends
_DATA segment word public 'DATA'
s@ label byte
 db 'Hello!'
 db 10
 db 0
 db '%s'
 db 0
_DATA ends
_TEXT segment byte public 'CODE'
_TEXT ends
 extrn _printf:near
 public _main
_s@ equ s@
 end

A to Z of C

386

 Here you can see how each C statement has been converted to equivalent assembly. The
C statements are commented out with semicolon (;) in assembly file. I hope this might give you
an idea about how high level statements are converted to equivalent assembly by compiler.
Assembly file produced by the compiler can be assembled with the available assembler or with
your own assembler.

48.3 Compiler-writing tools
 As I pointed out, writing a compiler is a bit tough. You need to parse or split the character
into meaningful tokens, check grammar and produce assembly listing. A compiler-writing tool
would help us to write our own compiler without much overhead. Lex and YACC (Yet Another
Compiler-Compiler) are the most famous compiler-writing utilities. Once Lex and YACC were
available only to UNIX, but now we’ve got DOS versions too. DOS versions of lex and YACC
are on CD .
 A typical compiler’s source structure discovering task can be divided into

1. Split the source file into tokens. It is a function of lexical analyzer.
2. Find the hierarchical structure of the program. It is a function of parser.

48.3.1 lex
 The lexical analyzer phase of a compiler is often referred as scanner or tokenizer, and it
translates the input into a form that is more usable by the rest of the compiler phases. lex is a
lexical anlyzer generator, which means it produces a C file that can be used as a lexical analyzer
for the given (new) language.

48.3.2 YACC
 YACC is a utility that translates the given grammar into a bottom-up parser. That is it
would produce a C file that can be used as parser for your language. In otherwords, YACC will
produce a compiler code for your new language, if you provide the grammar! It is really a nice
tool for developing compiler in an easy and neat manner. Berkeley YACC for MS-DOS by Jeff
Jenness & Stephen C. Trier is a clone of UNIX’s YACC and it is a gift to the people who are
working under DOS. Wido Kruijtzer also developed another Berkeley YACC for MS-DOS
version. More information on YACC, how to input the grammar etc are available on CD .

48.3.3 Creating Compiler with lex & YACC
 The following diagram shows how lex & YACC are used in UNIX environment to
produce a compiler for a new language.

 A to Z of C

387

 With little bit of creativity and compiler-writing utilities, hope you might come out with a
new language!

yacc

language.y
(parser/grammar

descriptions)

y.tab.h
(Header file for
token definition)

lex

linker Other
libraries & objects

lib1.lib, lib2.a
(Files to be linked in
Unix environment)

language.c
(Generated
Compiler)

lex.yy.c
(C file for
scanner)

yy.out.c
(C file for
parser)

language.lex
(scanner

descriptions)

C compiler
(e.g. cc)

