

“Blessed are the pure in heart.”

Printer Programming

As everyone knows, Printers help us to produce hard copies. The quality of the printer is
referred by the term �resolution�. Dots per inch (dpi) is the unit of resolution.

53.1 Types of Printers
 Nowadays we�ve got Dot Matrix, Inkjet & Laser Printers. Other old printers like Line,
Drum etc, are now obsolete.

53.1.1 Dot Matrix Printers
 Dot matrix printers use round-headed pins arranged in a rectangular pattern (like matrix).
These pins strike against the inked ribbon and form various characters and patterns. The number
of pins determines the print quality, which is usually either 9 or 24.

53.1.2 Inkjet Printers
 Spraying inks over the paper forms the characters. The ink particles are ionized and the
magnetized plates let the ink to form typical pattern on the paper.

53.1.3 Laser Printers
 Laser Printers work just like copier machines. That is, they form the electrostatic image
of the entire images on a photosensitive drum with the help of laser beam. Then toner (toner is an
ultra fine colored powder) is applied to the drum and so it adheres to the sensitized areas
corresponding to the character and other patterns. Now the drum spins over the paper, transfers
the toner to paper from drum and the paper gets printed.

53.2 Printer Languages
 People thought that it is necessary to have a �language� to control printers.

53.2.1 Page Description Language
 Page Description Language (PDL) is used to communicate usually with page printers.
Inkjet and Laser printers are referred as page printers, because they manipulate the entire page in
memory (Dot Matrix printers manipulate character by character). It is the duty of the internal
firmware found on the printer to convert PDL codes to specified pattern of dots. We�ve got two
PDLs namely Printer Control Language (PDL) and PostScript.

53

A to Z of C

564

53.2.1.1 Printer Control Language

 Printer Control Language (PCL) is developed by Hewlett Packard in 1984 to be used in
HP LaserJet printers as a PDL. PCL uses control codes (like escape codes). The recent version of
PCL is 6.

53.2.1.2 PostScript

 PostScript was developed by John Warnock of Adobe as PDL to be used in laser printers.
PostScript is referred as a standard programming language. It is also referred as object oriented
language, because it sends images to the printer as geometrical objects rather than bitmaps. This
technique is also referred as vector graphic, instead of bitmap graphic. Recent version of
PostScript is 3.

53.2.2 Escape Codes
 Dot matrix printers mostly use escape codes. Almost all Laser and Inkjet printers support
PDLs. But some printers (Dot Matrix) don�t support PDL and they use Escape Codes. The printer
commands are sent as a combination of Escape Sequences. For example, to set the line spacing to
1/8 inch, the respective command is ESC �0�. Likewise we�ve got so many commands or Escape
Sequences. Escape codes are non-standard as each printer vendor use different sets of Escape
Codes.

53.3 Printing non-printable characters
 In this section, I am going to explain how to print non-printable characters on Epson 9
pin Dot Matrix Printer. This can be achieved by creating PCL or PostScript file. But for that, you
have to know the file format of them and it is a tedious job. It means that you have to develop
your own software that �creates� PCL or PostScript! The easy way is to use Escape Codes.

Note
Since the Escape Codes are mostly ‘printer’ and ‘vendor’ specific, the Escape Sequences I have used here
will mostly work only on Epson 9 pin Dot Matrix Printers.

53.3.1 Epson Extended Character Set

Ordinary Epson character set doesn�t have non-printable characters. But Epson Extended
character set contains all printable characters and �few� non-printable characters: single box
characters, heart, diamond, club, spade, plus/minus sign, and division sign. But this extended
character set uses different values to represent such an extended character.

 A to Z of C

565

Character
ASCII
value

Epson
Extended
Character
Set Value

Character
ASCII
value

Epson
Extended
Character
Set Value

┌ 218 135 ─ 196 133

┐ 191 136 │ 179 134

└ 192 137 ♠ 6 145

┘ 217 138 ♥ 3 146

├ 195 132 ♦ 4 147

┤ 180 131 ♣ 5 148

┬ 194 130 ÷ 246 158

┴ 193 129 ± 241 159

┼ 197 128

 To set the printer to Epson Extended Character Set, we have to send ESC �m� 4. For
that we can use the biosprint() function. As this mode uses �character set�, it will be faster
than graphics mode.

53.3.2 Graphics Mode

 Graphics mode is the slowest one. To set the printer to graphics mode, we have to send:
ESC �*� n1 n2 n3.

 where n1 is the resolution (n1 = 4 means 80 dpi),
n2 = number of bytes to print % 256,
n3 = number of bytes to print / 256.

Let�s see how to program the pins of printer head. To

activate the bottommost pin 0 we have to send 1 as a command, to
activate pin 1 we have to send 2 as a command�

So to activate pins 0, 1 and 7 at a given time, we have to

send 1+2+128 = 131 to the printer. Before that, it is necessary to set
the printer to graphics mode with the command:
ESC �*� 4 8%256 8/256 (or ESC �*� 4 8 0).

Note
At a given time you can program up to 8 pins only. So if you sent 256, all
pins will be activated. You cannot program the 9th pin (i.e., pin 8).

Pin
Pin
No.

Command
to be sent

●
●
●
●
●
●
●
●

7
6
5
4
3
2
1
0

128 (27)
64 (26)
32 (25)
16 (24)
8 (23)
4 (22)
2 (21)
1 (20)

A to Z of C

566

For example, to print the character �H� in graphics mode, the
command to be sent to the printer will be:

ESC �*� 4 8 0 (then pin values) 256 16 16 16 16 16 16
256

53.3.3 Font Map

 Now we have learned about graphics mode. In the previous
section, we have manually found out the �pin values�. Manually finding
out pin values is a tedious job and it is tough too. Fortunately in ROM,
we�ve got �font map� for each characters. So it is wise to use font map,
which is already available in ROM to generate pin values.

Interrupt 10h, AX = 1130h, BX = 0300h returns pointer to 8x8 font.
Interrupt 10h, AX = 1130h, BX = 0200h returns pointer to 8x14 font.

 I prefer 8x8 font, because it reduces the programming effort
and speeds up printing.

Note
If you prefer 8x14 font, you have to print the part of the font (with height 8) in one line and then you
have to print the remaining part of the font (with height 6) in another line.

 The returned pointer by int 10h will point to the font map of first character of the
ASCII set (i.e., NULL or ASCII-0). The font map of the letter �H� will be at the offset �H�
(ASCII-72). Similarly font map of every letter of the ASCII set (including non-printable
characters) will be at the offset of its ASCII value. So with the help of the pointer and a simple
program, we can find out the pin values easily.

53.3.4 Optimization Tip

 We must understand that graphics mode is the slowest one. Printing with Epson
Extended Character Set is faster than graphics mode. So it is wiser to use Epson extended
character set�s all available characters. For all other non-printable characters use graphics mode.

 ● ●
 ● ●
 ● ●
● ● ● ● ● ● ● ●
 ● 16 ●
 ● ●
 ● ●
 ● ●
256 256

10000001
10000001
10000001
11111111
10000001
10000001
10000001
10000001

Font map of ‘H’
that will be in ROM

 A to Z of C

567

53.3.5 Program

 The following is the code to print non-printable characters on Epson 9 pin Dot Matrix
Printers.

/*---
 PR � To print non-printable characters
 File name: Pr.c
 *-----
 */

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <bios.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>

#define PRINTER_WRITE (0)
#define PRINTER_STATUS (2)
#define ESC (27)
#define LPT1 (0)

#define FNTHEIGHT (8)

void Send2LPT1(int num, ...);
void SetLineSpacingTo1by8(void);
void SetPrinter2GraphicsMode(void);
void PrintWithEpsonCharSet(unsigned char ch);

/*---
 Send2LPT1 - Send 'num' characters to LPT1 */

void Send2LPT1(int num, ...)
{
 va_list argptr;
 int i;
 va_start(argptr, num);
 for (i=0 ; i<num ; ++i)
 biosprint(PRINTER_WRITE, va_arg(argptr, int), LPT1);
 va_end(argptr);
} /*--Send2LPT1()-------------*/

/*---
 SetLineSpacingTo1by8 - Sets line spacing to 1/8 inch */

A to Z of C

568

void SetLineSpacingTo1by8(void)
{
 Send2LPT1(2, ESC, '0');
} /*--SetLineSpacingTo1by8()------*/
/*---
 SetPrinter2GraphicsMode - Initializes printer to graphics mode */

void SetPrinter2GraphicsMode(void)
{
 Send2LPT1(5, ESC, '*', 4, 8%256, 8/256); /* 80 dpi quality */
} /*--SetPrinter2GraphicsMode()-------*/

/*---
 PrintWithEpsonCharSet - Initializes printer to Epson Extended
 Printer Character Set and print a single character 'ch'.
 Epson Character Set contains all printable characters, single
 line box characters and few other ASCII characters.
 (It is faster than Graphics mode.) */

void PrintWithEpsonCharSet(unsigned char ch)
{
 Send2LPT1(4, ESC, 'm', 4, ch);
} /*--PrintWithEpsonCharSet()-------*/

int main(int argc, char *argv[])
{
 FILE *fp;
 struct REGPACK regs;
 unsigned char ch;
 char far *font8x8, far *ptr;
 unsigned int segment, offset;
 int fntval, mask, powof2, status;
 register int i, j;

 /* call the bios interrupt to get the address of the desired font */
 regs.r_ax = 0x1130;
 regs.r_bx = 0x0300;
 intr(0x10, ®s);
 /*make a far pointer font8x8 point to info returned by the bios call*/
 offset = regs.r_bp;
 segment = regs.r_es;
 font8x8 = (char far*) MK_FP(segment, offset);
 /*---Check For any Errors-----> */
 if (argc < 2)
 {
 cprintf(
 " Syntax: PR filename [-bb | -nbb] \a\r\n"

 A to Z of C

569

 " -bb Box Better. Box characters will appear better. But \r\n"
 " characters of adjacent lines may touch each other. \r\n"
 " (default) \r\n"

 " -nbb No Box Better. Characters of adjacent lines won't \r\n"
 " touch each other. "
);
 exit(1);
 }
 status = biosprint(PRINTER_STATUS, 0, LPT1);
 if (status & 0x01)
 {
 cprintf(" Fatal Error: Printer time out \a\r\n");
 exit(1);
 }
 if (status & 0x08)
 {
 cprintf(" Fatal Error: I/O error \a\r\n");
 exit(1);
 }
 if ((fp = fopen(argv[1], "rb"))==NULL)
 {
 perror(" Fatal Error\a");
 exit(1);
 }
 /*-- <---Error Checked...OK! --*/

 /* if switch is not equal to "-nbb", then do default ie, "-bb" */
 if (strcmpi(argv[2], "-nbb")!=0)
 SetLineSpacingTo1by8();

 while (!feof(fp))
 {
 fread(&ch, 1, 1, fp);
 if (ch=='\r' || ch=='\n' || ch=='\a'|| ch=='\t'|| ch=='\v'
 || ch=='\f'|| ch=='\b'|| ch==0
 || ch==255 || (ch>=' '&&ch<='~'))
 PrintWithEpsonCharSet(ch);
 else
 {
 switch(ch)
 {
 /* Box Characters adjust */
 /* upper left corner */
 case 218: /* '┌' */
 PrintWithEpsonCharSet(135);
 break;

A to Z of C

570

 /* Upper right corner */
 case 191: /* '┐' */
 PrintWithEpsonCharSet(136);
 break;
 /* Lower left corner */
 case 192: /* '└' */
 PrintWithEpsonCharSet(137);
 break;
 /* Lower right corner */
 case 217: /* '┘' */
 PrintWithEpsonCharSet(138);
 break;
 /* Middle left corner */
 case 195: /* '├' */
 PrintWithEpsonCharSet(132);
 break;
 /* Middle right corner */
 case 180: /* '┤' */
 PrintWithEpsonCharSet(131);
 break;
 /* Middle top corner */
 case 194: /* '┬' */
 PrintWithEpsonCharSet(130);
 break;
 /* Middle bottom corner */
 case 193: /* '┴' */
 PrintWithEpsonCharSet(129);
 break;
 /* Center cross */
 case 197: /* '┼' */
 PrintWithEpsonCharSet(128);
 break;
 /* Horizontal */
 case 196: /* '─' */
 PrintWithEpsonCharSet(133);
 break;
 /* Vertical */
 case 179: /* '│' */
 PrintWithEpsonCharSet(134);
 break;
 /* Other ASCII Characters adjust */
 case 6: /* spade */
 PrintWithEpsonCharSet(145);
 break;
 case 3: /* heart */
 PrintWithEpsonCharSet(146);
 break;

 A to Z of C

571

 case 4: /* diamond */
 PrintWithEpsonCharSet(147);
 break;

 case 5: /* club */
 PrintWithEpsonCharSet(148);
 break;
 case 246: /* 'Ў' */
 PrintWithEpsonCharSet(158);
 break;
 case 241: /* 'ё' */
 PrintWithEpsonCharSet(159);
 break;
 default:
 mask = 128;
 SetPrinter2GraphicsMode();
 for (i=0; i<8; ++i)
 {
 /* make ptr point the start of the letter in

 the rom font each character is FNTHEIGHT
 bytes with each bit in a byte being a
 pixel on/off for that scan line of the
 charater

 */
 ptr = font8x8 + (ch * FNTHEIGHT);
 fntval = 0;
 powof2 = 128;
 for (j=0 ; j<8 ; ++j)
 {
 fntval += (*ptr&mask) ? powof2 : 0;
 ++ptr; /* ptr points to the next scanline

 of the current character */
 powof2 >>= 1;
 }
 biosprint(PRINTER_WRITE, fntval, LPT1);
 mask >>= 1; /* or dividing by 2 */
 }
 }
 }
 }
 fclose(fp);
 return(0);
} /*--main()------------*/

A to Z of C

572

Suggested Projects
1. As far as I know, there is no function library for printing purposes. So develop your own

PRINTER.LIB. The library should contain similar functions like
Set2GraphicsMode(), SetLineSpacingTo1by8(), etc. It is very easy to do so! No
programming skill is necessary! The only thing you need is Escape Codes.

2. Write a program that prints the given text in Braille characters. (Hint: You may need to
alter your dot-matrix printer. That is, you have to remove the ribbons, replace the existing
soft pins with hard pins. For programming, use graphics mode)

