Size: BYTE

```
MEM 0040h:00CEh - COUNT OF DAYS SINCE LAST BOOT
Size: WORD
-----*-M004000D0-----
MEM 0040h:00D0h - RESERVED
Size: 32 BYTEs
-----S-M004000D0-----
MEM 0040h:00D0h - Digiboard MV/4 - LENGTH OF DATA TABLE
Size: BYTE
-----d-M004000D0------
MEM 0040h:00D0h
                 EHD floppy - INSTALLATION FLAGS
Size: BYTE
Bitfields for EHD floppy installation flags:
Bit(s) Description
                 (Table M0051)
4
     installation completed
3-0
     drives 0-3
-----b-M004000D0-----
MEM 0040h:00D0h - AMI BIOS ∨1.00.12.AX1T - EPP - SCRATCH SPACE
Size: WORD
Desc: this word holds the value of BX during an EPP BIOS call
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00D6h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"
-----S-M004000D1-----
MEM 0040h:00D1h - Digiboard MV/4 - PRODUCT ID
Size: BYTE
-----S-M004000D2-----
MEM 0040h:00D2h - Digiboard MV/4 - BASE ADDRESS FOUND
Size:
    WORD
-----b-M004000D2-----
MEM 0040h: 00D2h - AMI BIOS v1.00.12.AX1T - EPP BASE I/O PORT
Size:
    WORD
-----S-M004000D4-----
MEM 0040h: 00D4h - Digiboard MV/4 - PORTS
Size: BYTF
-----S-M004000D5-----
MEM 0040h:00D5h - Digiboard MV/4 - IRQ
Size: BYTE
-----d-M004000D5-----
MEM 0040h:00D5h - EHD floppy - NUMBER OF FLOPPY DISK CONTROLLERS IN SYSTEM
Size: BYTE
-----b-M004000D5-----
MEM 0040h: 00D5h - AMI BIOS ∨1.00.12.AX1T - EPP - PARALLEL PORT 0 CAPABILITIES
Size:
    BYTF
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D6h"AMI",MEM 0040h:00D7h"AMI"
SeeAlso: MEM 0040h:00DCh"AMI"
-----d-M004000D6------
MEM 0040h:00D6h
                - EHD floppy - AND-BITS TO ADJUST PORT ADDRESS
```

```
Note: this byte contains FFh if controller at 03Fxh and 7Fh if at 037xh; the
       value is ANDed with DL prior to using IN A?, DX or OUT DX, A?
       instructions
-----K-M004000D6------
MEM 0040h: 00D6h - Digiboard MV/4 - NUMBER OF KEYBOARDS FOUND
Size:
      WORD
SeeAlso: MEM 0040h:00D8h"Digiboard"
-----b-M004000D6-----
MEM 0040h: 00D6h - AMI BIOS ∨1.00.12.AX1T - EPP - PARALLEL PORT 0 IRQ
Size:
      BYTF
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00D8h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"
-----d-M004000D7-----
MEM 0040h:00D7h - EHD floppy - DRIVE 0 DISKETTE MEDIA STATE
Size:
      BYTE
Note: the value in this byte is copied into 0040h:0090h (diskette 0 status)
SeeAlso: MEM 0040h:00D8h"EHD",MEM 0040h:00D9h"EHD",MEM 0040h:00DAh"EHD"
Bitfields for EHD diskette media state:
Bit(s) Description (Table M0052)
7-6
      data rate: 00=500kbps,01=300kbps,10=250k,11=1M/S
      double stepping required (e.g. 360kB in 1.2MB)
      media type established
4
3
      reserved
2-0
      on exit from BIOS, contains:
      000 trying 360kB in 360kB
      001 trying 360kB in 1.2MB
      010 trying 1.2MB in 1.2MB
      011 360kB in 360kB established
      100 360kB in 1.2MB established
      101 1.2MB in 1.2MB established
      110 reserved (2M8?)
      111 all other formats/drives
-----b-M004000D7------
MEM 0040h: 00D7h - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 1 CAPABILITIES
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00D6h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"
-----M-M004000D8-----
MEM 0040h:00D8h - Digiboard MV/4 - NUMBER OF MICE FOUND
Size: WORD
SeeAlso: MEM 0040h:00D6h"Digiboard",MEM 0040h:00DAh"Digiboard"
-----d-M004000D8-----
MEM 0040h:00D8h - EHD floppy - DRIVE 1 DISKETTE MEDIA STATE
Size: BYTE
SeeAlso: MEM 0040h:00D7h"EHD",MEM 0040h:00D9h"EHD",MEM 0040h:00DAh"EHD"
-----b-M004000D8-----
MEM 0040h: 00D8h - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 1 IRQ
```

```
Size:
      BYTE
SeeAlso: MEM 0040h:00D2h"AMI".MEM 0040h:00D6h"AMI".MEM 0040h:00D7h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"
-----b-M004000D8------
MEM 0040h:00D8h U - Phoenix BIOS 4.0 Rel 6.0 - POWER MANAGEMENT FLAGS
Size:
      BYTE
SeeAlso: INT 15/AX=5300h
-----d-M004000D9-----
MEM 0040h:00D9h - EHD floppy - DRIVE 2 DISKETTE MEDIA STATE
Size:
SeeAlso: MEM 0040h:00D7h"EHD",MEM 0040h:00D8h"EHD",MEM 0040h:00DAh"EHD"
-----S-M004000DA-----
MEM 0040h:00DAh - Digiboard MV/4 - CURRENT PORT (used by VGA initializatn only)
Size:
      BYTE
SeeAlso: MEM 0040h:00D8h"Digiboard"
-----d-M004000DA-----
MEM 0040h:00DAh - EHD floppy - DRIVE 3 DISKETTE MEDIA STATE
Size:
SeeAlso: MEM 0040h:00D7h"EHD",MEM 0040h:00D8h"EHD",MEM 0040h:00D9h"EHD"
-----S-M004000DB-----
MEM 0040h: 00DBh - Digiboard MV/4 - MASTER 8259 MASK (used by VGA init only)
Size:
SeeAlso: MEM 0040h:00DCh"Digiboard"
-----d-M004000DB-----
MEM 0040h:00DBh - EHD floppy - DRIVE 0 NEEDS RECALIBARATION
Size:
      BYTF
SeeAlso: MEM 0040h:00DCh"EHD",MEM 0040h:00DDh"EHD",MEM 0040h:00DEh"EHD"
-----S-M004000DC-----
MEM 0040h:00DCh - Digiboard MV/4 - SLAVE 8259 MASK (used by VGA init only)
Size:
     BYTE
SeeAlso: MEM 0040h:00DBh"Digiboard"
-----b-M004000DC-----
MEM 0040h: 00DCh - AMI BIOS ∨1.00.12.AX1T - EPP - PARALLEL PORT 0 MODE
Size:
      BYTF
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00DDh"AMI"
SeeAlso: INT 17/AX=0200h/BX=5050h
(Table M0053)
Values for AMI Enhanced Parallel Port mode:
01h
      compatibility mode
      bi-directional mode
02h
04h
      EPP mode
SeeAlso: #00637
-----d-M004000DC-----
MEM 0040h:00DCh - EHD floppy - DRIVE 1 NEEDS RECALIBARATION
Size:
SeeAlso: MEM 0040h:00DBh"EHD",MEM 0040h:00DDh"EHD",MEM 0040h:00DEh"EHD"
-----b-M004000DC-----
```

```
MEM 0040h: 00DCh - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 1 MODE
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI", MEM 0040h:00DCh"AMI", #M0053
-----d-M004000DD-----
MEM 0040h:00DDh - EHD floppy - DRIVE 2 NEEDS RECALIBARATION
Size:
      BYTE
SeeAlso: MEM 0040h:00DBh"EHD",MEM 0040h:00DCh"EHD",MEM 0040h:00DEh"EHD"
-----d-M004000DE-----
MEM 0040h:00DEh - EHD floppy - DRIVE 3 NEEDS RECALIBARATION
Size:
      BYTF
SeeAlso: MEM 0040h:00DBh"EHD",MEM 0040h:00DCh"EHD",MEM 0040h:00DDh"EHD"
-----b-M004000DF-----
MEM 0040h: 00DFh - AMI BIOS ∨1.00.12.AX1T - EPP - PARALLEL PORT LOCK STATE
Size: BYTE
Note: set to 01h if last request was to lock a port, 00h if last request was
       to unlock a port
SeeAlso: MEM 0040h:00D2h"AMI", MEM 0040h:00DCh"AMI"
-----b-M004000E0-----
MEM 0040h:00E0h - AMI BIOS ∨1.00.12.AX1T - EPP - REAL-TIME DEVICE COUNT
Size: BYTE
Desc: contains the number of advertised real-time devices as set by EPP
       function 12h (see #00632)
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00DFh"AMI"
-----b-M004000E0-----
MEM 0040h: 00E0h - Phoenix 386 BIOS - DRIVE PARAMETER TABLE FOR FIRST HARD DISK
Size: 16 BYTEs
Note: this area is used to store the driver parameter table for the first
       hard disk if it has been setup as the user-configurable "type 47"
-----d-M004000E3-----
MEM 0040h:00E3h - EHD floppy - DRIVE 0 DISKETTE TYPE (from jumpers)
Size:
      BYTE
SeeAlso: MEM 0040h:00E4h,MEM 0040h:00E5h"EHD",MEM 0040h:00E6h"EHD"
(Table M0054)
Values for EHD floppy diskette type:
      undefined by diskette change (360K)
02h
      1.2M
03h 720K
04h 1.44M
05h
      2.88M
-----d-M004000E4-----
MEM 0040h:00E4h - EHD floppy - DRIVE 1 DISKETTE TYPE (from jumpers)
Size:
      BYTF
SeeAlso: MEM 0040h:00E3h,MEM 0040h:00E5h"EHD",MEM 0040h:00E6h"EHD"
-----d-M004000E5-----
MEM 0040h:00E5h - EHD floppy - DRIVE 2 DISKETTE TYPE (from jumpers)
Size:
      BYTE
SeeAlso: MEM 0040h: 00E3h, MEM 0040h: 00E4h"EHD", MEM 0040h: 00E6h"EHD"
```

```
MEM 0040h:00E5h - AWARD v4.51PG - ASSOC DRIVE NUMBERS TO PHYSICAL INTERFACES
Size:
      BYTE
SeeAlso: MEM 0040h:00B5h"Gigabyte"
Bitfields for drive number/interface mapping:
Bit(s)
     Description
                  (Table M0128)
7-6
      interface for drive 83h (F:)
      00 primary master
      01 primary slave
      10 secondary master
      11 secondary slave
      interface for drive 82h (as for bits 7-6)
5-4
3-2
      interface for drive 81h (as for bits 7-6)
1-0
      interface for drive 80h (C:) (as for bits 7-6)
SeeAlso: #M0129
-----d-M004000F6-----
MEM 0040h: 00E6h - EHD floppy - DRIVE 3 DISKETTE TYPE (from jumpers)
Size:
      BYTE
SeeAlso: MEM 0040h:00E3h,MEM 0040h:00E4h"EHD",MEM 0040h:00E5h"EHD"
-----d-M004000EA------
MEM 0040h:00EAh - Omti controller - SEGMENT OF EXTENDED BIOS DATA AREA???
Size:
      WORD
Note: drive parameter tables stored in specified segment
-----b-M004000EC-----
MEM 0040h:00ECh - Dell 4xxDE BIOS A11 - LOOP COUNT FOR DELAYS
Size:
     WORD
-----M004000F0-----
MEM 0040h:00F0h - INTRA-APPLICATION COMMUNICATION AREA
Size: 16 BYTEs
-----B-M00500000------
MEM 0050h:0000h - PRINT-SCREEN STATUS
Size:
      BYTE
-----J-M00500001-----
MEM 0050h:0001h - NEC PC-9800 series - SCREEN MODE
Size: BYTE
Note: if bit 3 set, the screen is in high-resolution mode (start memory at
       segment E000h instead of A000h)
-----D-M00500004-----
MEM 0050h:0004h - MS-DOS - LOGICAL DRIVE FOR SINGLE-FLOPPY SYSTEM (A: / B:)
Size:
     BYTF
-----A-M0050000E-----
MEM 0050h:000Eh - STATE OF BREAK CHECKING AT START OF BASICA.COM EXECUTION
Size:
     BYTE
-----A-M0050000F-----
MEM 0050h:000Fh - BASICA VERSION FLAG
Size:
      BYTE
Note:
      this byte contains the value 02h if BASICA v2.10 is running
```

```
-----A-M00500010------
MEM 0050h: 0010h - POINTER TO BASIC DATA SEGMENT
Size: WORD
-----A-M00500012-----
MEM 0050h:0012h - INT 08 VECTOR AT START OF BASICA.COM EXECUTION
Size:
      DWORD
-----A-M00500016-----
MEM 0050h:0016h - INT 1B VECTOR AT START OF BASICA.COM EXECUTION
Size:
      DWORD
-----A-M0050001A------
MEM 0050h:001Ah - INT 24 VECTOR AT START OF BASICA.COM EXECUTION
Size:
      DWORD
-----D-M00600000-----
MEM 0060h:0000h - DOS 2+ SCRATCH SPACE
Size:
      256 BYTEs
Note: used during DOS 2+ boot process
-----D-M00600000------
MEM 0060h:0000h - DOS 1.x IO.SYS LOAD ADDRESS
-----D-M00700000------
MEM 0070h:0000h - DOS 2+ IO.SYS LOAD ADDRESS
-----D-M00700100-----
MEM 0070h:0100h - DOS 5+ - ORIGINAL INTERRUPT VECTORS 10h,13h,15h,19h,1Bh
Size:
      25 BYTES
Note: each value is stored as a BYTE for the interrupt number followed by
       a DWORD for the vector
      these values are restored on INT 19 by recent versions of
       DR/Novell/PC/MS-DOS (MS-DOS 3.x used this area to support HIMEM.SYS)
      not supported by OS/2 MDOS
SeeAlso: MEM 0080h:0000h,INT 2F/AH=13
-----d-M0070016C-----
MEM 0070h:016Ch - DR-DOS 7.02-7.03 - "DEVNO" AUX/PRN PORT ASSIGNMENTS
Size:
      2 BYTEs
016Ch BYTE PRN: assignment (0...2 for LPT1:..LPT3: (3 for LPT4:); default: 1)
016Dh BYTE AUX: assignment (0..3 for COM1:..COM4:; default: 1)
Notes: As long as the built-in AUX: or PRN: drivers are in effect, these
       settings can be transparently reassigned at the DR-OpenDOS 7.02 /
       DR-DOS 7.03 DOS BIOS device driver level (that is below DOS
       redirection etc., but above ROM BIOS) using the undocumented
       CONFIG.SYS AUX=0|1..4 and PRN=0|1..3|4 directive, where 1..4
       specifies COM1:..COM4: or LPT1:..LPT4: and the high speed bypass 0
       selects the previous hardwired equivalence of AUX: with COM1: and
       PRN: with LPT1: at this level, saving a few clock cycles. The system
       defaults to AUX=1 and PRN=1 (that is 0 in the internal variables).
      If the high speed bypass was not enabled, the assigment can be changed
       anytime later by updating these bytes, e.g. by a future issue of the
       MODE utility. If the highspeed bypass has been enabled, changes have
```

Size:

Size:

7 6

3

2

1

7-2

=1 Do not write-protect RAM at FE0000.

1

5-4

no effect. The LPT4 setting (or corresponding value 3) is valid for DR-OpenDOS 7.02 and DR-DOS 7.02, but due to a bug introduced with the partial removal of the LPT4: device, it must not be used under DR-DOS 7.03. The address 0070h:016Ch is only valid for DR-OpenDOS 7.02 up to DR-DOS 7.03 (BDOS 73h), and will most probably change with future releases of DR-DOS! These bytes are local for each task running. SeeAlso: INT 21h/03h, INT 21h/04h, INT 21h/05h, MEM 0040h:0000h etc. ------H-M00800000------MEM 0080h:0000h - 80286 CPU - LOADALL WORKSPACE 102 BYTEs Desc: on the 80286 (unlike 80386), the state buffer from which the LOADALL instruction loads all internal registers is hardwired to physical address 000800h several versions 3.x of MS-DOS leave an empty space at offset 100h in Note: IO.SYS (which is loaded at 0070h:0000h) so that HIMEM.SYS can use LOADALL on 80286 machines without having to save/restore the area of memory that LOADALL uses SeeAlso: MEM 0070h:0100h -----m-m80C00000------MEM 80C00000h - Compaq Deskpro 386 system memory board register BYTF 80C00000 R Diagnostics register (see #M0055) 80C00000 W RAM relocation register (see #M0056) Bitfields for Compaq Deskpro 386 diagnostics register: Bit(s) Description (Table M0055) =0 memory expansion board is installed =0 second 1 MB of system memory board is installed base memory 00 set to 640 KB 01 invalid 10 set to 512 KB 11 set to 256 KB parity correct in byte 3 parity correct in byte 2 parity correct in byte 1 parity correct in byte 0 (in 32-bit double word) SeeAlso: #M0056 Bitfields for Compaq Deskpro 386 RAM relocation register: Bit(s) Description (Table M0056) reserved, always write 1's. =0 Write-protect 128-Kbyte RAM at FE0000.

```
=0 Relocate 128-Kbyte block at FE0000 to address 0E0000
0
       =1 128-Kbyte RAM is addressed only at FE0000.
SeeAlso: #M0055
-----m80C00000------
MEM 80C00000h - COMPAO DIAGNOSTICS REGISTER
Size: WORD
Note: Writing to F000h: FFE0h seems to involve unlocking the memory by writing
        FEFEh to this address first. The write-protection can be
        reestablished by writing FCFCh to this address??? This was seen done
        by MS HIMEM.SYS.
SeeAlso: F000h:FFE0h
Bitfields for Compaq Diagnostics Register:
                    (Table M0132)
Bit(s) Description
15-10 unknown purpose (should remain set???)
       =1 memory is read-write???
       =0 memory is read-only???
       =1 to disable ROM replacement???
8
       =0 normal???
7-2
      unknown purpose (should remain set???)
       =1 memory is read-write
       =0 memory is read-only
       =1 to disable ROM replacement???
0
       =0 normal
Note: Writing to F000h: FFE0h seems to involve unlocking the memory by writing
        FEFEh to this address first. The write-protection can be
        reestablished by writing FCFCh to this address???
        Microsoft HIMEM.SYS was seen to do this.
SeeAlso: F000h: FFF0h
-----V-MA0000000------
MEM A000h: 0000h - EGA+ GRAPHICS BUFFER
     65536 BYTEs
-----V-MA0000000-----
MEM A000h: 0000h - S3 - MEMORY-MAPPED GRAPHICS PROCESSOR REGISTERS
Note: the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
-----V-MA0001234-----
MEM A000h: 1234h - S3 - MEMORY-MAPPED ???
Size:
      WORD???
Note: the Win95 driver for the Stealth64 tests various bits in this word,
        sometimes looping until a particular bit is set or cleared
-----V-MA0008000-----
MEM A000h: 8000h - S3 - MEMORY-MAPPED PCI CONFIGURATION REGISTERS
Size:
      256 BYTEs
Notes: the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
```

```
frame buffer
       additional setup may be required to access these registers via memory
       the DWORDs at 8080h,8088h,808Ch,8090h,8094h,8098h,809Ch are used by
        STLTH64.DRV
       the DWORDs at 18080h.18088h.18090h.18094h.18098h.1809Ch are written
        by S3 32.DLL
-----V-MA0008100-----
MEM A000h: 8100h - S3 - MEMORY-MAPPED PACKED REGISTERS
Size:
      80 BYTEs
Access: Write-Only
Desc: these registers pack two 16-bit I/O registers into a single DWORD
        for faster writes
Note:
       the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
SeeAlso: MEM A000h:8180h
Format of S3 Trio32/Trio64 packed memory-mapped registers:
Offset Size
              Description
                            (Table M0057)
8100h DWORD
                     drawing control: row (low word), column (high word)
              "CUR_X" and "CUR_Y" (see PORT 82E8h,PORT 86E8h)
                     (Trio64) drawing control: row 2 (low word), column 2 (high word)
8104h DWORD
                     drawing control: destination Y and axial step constant (low
8108h DWORD
               word), destination X and axial step constant (high word)
              (see PORT 8AE8h, PORT 8EE8h)
810Ch DWORD
                     (Trio64 only) destination Y 2 and axial step constant 2 (low
               word), destination X 2 and axial step constant 2 (high word)
              (see PORT 8AEAh, PORT 8EEAh)
8110h WORD error term (see PORT 92E8h)
8112h WORD (Trio64) error term 2 (see PORT 92EAh)
8114h DWORD
                     unused??? (would correspond to PORT 96E8h)
8118h WORD drawing control: command register (see PORT 9AE8h)
811Ah WORD (Trio64) command register 2 (see PORT 9AEAh)
811Ch DWORD
                     short stroke (see PORT 9EE8h)
8120h DWORD
                     background color (see PORT A2E8h)
8124h DWORD
                     foreground color (see PORT A6E8h)
8128h DWORD
                     write mask (see PORT AAE8h)
812Ch DWORD
                     read mask (see PORT AEE8h)
8130h DWORD
                     color compare (see PORT B2E8h)
8134h DWORD
                     background mix (low word) and foreground mix (high word)
              (see PORT B6E8h, PORT BAE8h)
                     top scissors (low word) and left scissors (high word)
8138h DWORD
              (see PORT BEE8h, #P1047)
813Ch DWORD
                     bottom scissors (low word) and right scissors (high word)
              (see PORT BEE8h, #P1047)
8140h DWORD
                     data manipulation control (low word) and miscellaneous 2 (high
               word) (see PORT BEE8h, #P1047)
8144h DWORD
                     miscellaneous (low word) and read register select (high word)
```

```
(see PORT BEE8h, #P1047)
8148h DWORD
                     minor axis pixel count (low word) and major axis pixel count
               (high word) (see PORT BEE8h, #P1047, PORT 96E8h)
814Ch WORD (Trio64) major axis pixel count 2 (see PORT 96EAh)
8150h DWORD
                     pixel data transfer (see PORT E2E8h, PORT E2EAh)
8154h 4 DWORDs
                     ???
8164h DWORD
                     ??? (written by STLTH64.DRV for Win95)
                     (Trio64 only) Pattern Y (low word), Pattern X (high word)
8168h DWORD
              (see PORT EAE8h, PORT EAEAh)
                     ??? (written by STLTH64.DRV for Win95)
816Ch DWORD
      setting 8138h to 0 and 813Ch to 12345678h may be a magic value to unlock
        some S3 features
SeeAlso: #M0073, #M0070
-----V-MA0008180-----
MEM A000h: 8180h - S3 - STREAMS PROCESSOR
Size:
       128 BYTEs
Note:
       the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
SeeAlso: MEM A000h: 8100h, MEM A000h: FF00h
Format of S3 Streams Processor memory-mapped registers:
Offset Size
              Description
                            (Table M0058)
8180h DWORD
                     primary stream control (see #M0059)
8184h DWORD
                     chroma key control (see #M0063)
8188h DWORD
                     unused??? (high word seems to echo 8184h, low word 8180h)
818Ch DWORD
                     unused??? (high word seems to echo 8184h, low word 8180h)
8190h DWORD
                     secondary stream control (see #M0061)
8194h DWORD
                     chroma key upper bound (bits 23-0) (see also #M0063)
                     secondary stream stretch (see #M0062)
8198h DWORD
                     ??? (set by S3_32.DLL)
819Ch DWORD
              bits 30-16: ???
              bits 14-0: ???
81A0h DWORD
                     blend control (see #M0064)
                     unused??? (reads as FFFFFFFh)
81A4h 3 DWORDs
                     ??? (appear to be read-only)
81B0h 4 DWORDs
81C0h DWORD
                     primary frame buffer address 0 (bits 21-0, multiple of 8)
81C4h DWORD
                     primary frame buffer address 1 (bits 21-0, multiple of 8)
81C8h DWORD
                     primary stream stride (bits 11-0 only)
81CCh DWORD
                     double buffer/LPB control (see #M0065)
                     secondary frame buffer address 0 (bits 21-0, multiple of 8)
81D0h DWORD
                     secondary frame buffer address 1 (bits 21-0, multiple of 8)
81D4h DWORD
                     secondary stream stride (bits 11-0 only)
81D8h DWORD
81DCh DWORD
                     opaque overlay control (see #M0066)
81E0h DWORD
                     K1 -- vertical stretch (lines in) (bits 10-0 only)
              set to one less than # lines in
                     K2 -- vertical stretch (stretch factor) (bits 10-0 only)
81E4h DWORD
              set to -(#lines in - #lines out)
```

```
DDA vertical accumulator (bits 11-0 only) (lines out)
81E8h DWORD
               set to (#lines out) - 1
81ECh DWORD
                      streams FIFO and RAS control (see #M0067)
81F0h DWORD
                      primary start coordinate (see #M0068)
                      primary window size (see #M0069)
81F4h DWORD
81F8h DWORD
                      secondary start coordinate (see #M0068)
81FCh DWORD
                      secondary window size (see #M0069)
       changes to registers 81E0h-81E8h do not take effect until the next
Note:
        VSYNC
SeeAlso: #M0073, #M0057, #M0070
Bitfields for S3 Streams Processor primary stream control:
Bit(s) Description
                      (Table M0059)
31
       reserved
30-28 filter characteristics
       000 unchanged primary stream
       001 2X stretch by replicating pixels
       010 2X stretch by interpolating horizontally (replicating vertically)
       else reserved
27
       reserved
26-24 color mode (see #M0060)
23-0 officially reserved, but writing nonzero values can hang display
Notes: the primary stream is the output from the display RAM
       bits 26-24 correspond to CR67 color mode field (see #P0688)
SeeAlso: #M0058, #M0061
(Table M0060)
Values for S3 Streams Processor color mode:
000b eight bits per pixel
001b YCrCb 4:2:2 unsigned, range 10h-F0h (secondary stream only)
010b YUV 4:2:2, range 00h-FFh (secondary stream only)
011b keyed high-color (1-5-5-5)
100b YUV 2:1:1 two's complement (secondary stream only)
101b high-color (5-6-5)
110b reserved
111b true-color (32bpp, high byte ignored)
SeeAlso: #M0059, #M0061
Bitfields for S3 Streams Processor secondary stream control:
Bit(s) Description
                      (Table M0061)
31
       reserved
30-28 filter characteristics
       000 unchanged secondary stream
       001 linear 0-2-4-2-0 for 1x-2x stretch
       010 bi-linear for 2x-4x stretch
       011 linear 1-2-2-2-1 for 4x+ stretch
       else reserved
28
       enable smoothing between horizontally adjacent bits (trial-and-error)
```

```
27
       reserved
26-24 color mode (see #M0060, #M0074)
23-12 reserved
11-0 initial value of DDA horizontal accumulator
       set to 2*(inwidth-1)-(outwidth-1)
Notes: the secondary stream is typically live video, but can be pointed at
        any part of video memory
       changes to this register do not take effect until the next VSYNC
SeeAlso: #M0058, #M0059, #M0062
Bitfields for S3 Streams Processor stretch/filter constants:
Bit(s) Description
                      (Table M0062)
31-27 reserved
26-16 K2 horizontal scaling factor (input width - output width)
15-11 reserved
10-0 K1 horizontal scaling factor (input width - 1)
Note: changes to this register do not take effect until the next VSYNC
SeeAlso: #M0061
Bitfields for S3 Streams Processor chroma-key control:
Bit(s) Description
                      (Table M0063)
31-29 reserved
28
       key control
       =1 normal color-key or chroma-key
       =0 (keyed RGB 1-5-5-5 mode only) extract key from high bit of input
        stream; if key bit is clear, show pixel from other stream
27
       reserved
26-24 color comparison precision
       000 compare bit 7 of R,G, and B values only
       001 compare bits 7-6
       111 compare bits 7-0
23-0 chroma-key color value
       23-16 = \text{red or } Y
       15-8 = \text{green or U/Cb}
       7-0 = blue or V/Cr
Note: if the keyed stream is YUV or YCrCb, then this register contains the
        lower bound and 8194h contains the upper bound of the chromakey
        value
SeeAlso: #M0058
Bitfields for S3 Streams Processor blend control:
Bit(s) Description
                       (Table M0064)
31-27 reserved (unused)
26-24 blend type
       000 show secondary stream (video) overlaying primary stream
       001 show primary stream overlaying secondary stream
       010 blend pri/sec. streams (dissolve, secondary intensity = full-prim.)
```

```
011 blend pri/sec. streams
       100 reserved (blank display)
       101 show secondary stream only where chroma-key color present
       110 show secondary stream (video) unconditionally
       111 reserved (blank display)
23-14 reserved
       ??? (officially reserved, but set by S3_32.DLL)
       primary stream intensity (00h-1Ch, must be multiple of 4)
12-8
4-0
       secondary stream intensity (00h-1Ch, must be multiple of 4)
       (ignored for blend type 010)
Notes: for blend type 011, the primary and secondary stream intensities should
         not total more than 20h to avoid wraparounds which appear as
         incorrect colors; for blend type 010, the secondary stream intensity
         is automatically computed as 20h - bits12-8
       changes to this register do not take effect until the next VSYNC
SeeAlso: #M0058
Bitfields for S3 Streams Processor double-buffer/LPB control:
Bit(s) Description
                       (Table M0065)
31-7
       reserved (unused; all but bit 7 appear to be read-only, as well)
       LPB frame buffer auto-toggle
6
       if set, End-of-Frame toggles bit 4
5
       delay loading LPB input buffer select until next End-of-Frame
       LPB input buffer select (see #M0073)
       O use LPB frame buffer address O (FFOCh) for incoming video data
       1 use LPB frame buffer address 1 (FF10h)
       reserved
2-1
       secondary stream buffer select
       00 use frame buffer address 0 (81D0h)
       01 use frame buffer address 1 (81D4h)
       1x use frame buffer 0/1 (81D0h/81D4h) selected by bit 4 for secondary
         stream and selected LPB frame buffer for LPB input
0
       primary stream buffer select
       =0 use frame buffer address 0 (81C0h)
       =1 use frame buffer address 1 (81C4h)
SeeAlso: #M0058, #M0073
Bitfields for S3 Streams Processor opaque overlay control:
Bit(s) Description
                       (Table M0066)
31
       enable opaque overlay control
30
       select top stream (0 = secondary on top, 1 = primary)
29
       reserved
28-19 pixel resume fetch
       number of quadwords from background's left edge to position at which
        to start fetching pixels again
18-13 reserved
12-3 pixel stop fetch
       number of quadwords from background's left edge to position at which
```

```
2-0
       reserved
SeeAlso: #M0058
Bitfields for S3 Streams Processor streams FIFO and RAS control register:
Bit(s) Description
                       (Table M0067)
31-22 reserved (0)
       skip 0.5 MCLK delay of PD[63:0] output (default = 0)
20
       skip memory arbitration for ROM cycles (default = 0)
19
       do not tristate PD[63:16] during ROM cycles (default = 0)
       (set by Win95 driver when using ISA bus)
18
       EDO wait state control (LPB memory cycles only)
       =0 two-cycle accesses
       =1 one-cycle EDO accesses
17
       reserved
16
       RAS# pre-charge control
       =0 use CR68(bit3) setting (2.5/3.5 MCLKs)
       =1 1.5 MCLKs
15
       RAS# low control
       =0 use CR68(bit2) setting (3.5/4.5 MCLKs)
       =1 2.5 MCLKs
14-10 primary stream FIFO threshold
       number of filled quadword slots at which to request refilling
9-5
       secondary stream FIFO threshold
       number of filled quadword slots at which to request refilling
4-0
       FIFO allocation, in quadword slots
       00000 \text{ primary stream} = 24, \text{ secondary} = 0
       01000 primary stream = 16, secondary = 8
       01100 primary stream = 12, secondary = 12
       10000 primary stream = 8, secondary = 16
       11000 primary stream = 0, secondary = 24
       else reserved
SeeAlso: #M0058
Bitfields for S3 Streams Processor start coordinate:
Bit(s) Description
                       (Table M0068)
31-27 reserved (read-only)
26-16 X coordinate (column) of upper left corner, plus 1
15-11 reserved (read-only)
10-0 Y coordinate (row) of upper left corner, plus 1
SeeAlso: #M0058.#M0069
Bitfields for S3 Streams Processor window size:
Bit(s) Description
                      (Table M0069)
31-27 reserved (read-only)
26-16 width in pixels - 1
15-11 reserved (read-only)
10-0 height in scan lines
```

to stop fetching pixels

SeeAlso: #M0073, #M0057, #M0072

SeeAlso: #M0058, #M0068 -----V-MA0008200-----MEM A000h: 8200h - S3 VIRGE - MEMORY-MAPPED MEMORY-PORT CONTROL REGISTERS Size: 40 BYTEs Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer Format of S3 memory-maped port control registers: Offset Size Description (Table M0070) 8200h DWORD FIFO control 8204h DWORD MIU control 8208h DWORD streams timeout 820Ch DWORD miscellaneous timeout 8210h 4 DWORDs 8220h DWORD DMA read base address 8224h DWORD DMA read stride width SeeAlso: #M0057 -----V-MA00082F8-----MEM A000h: 82E8h - S3 - MEMORY-MAPPED CURRENT Y POSITION REGISTER Size: WORD Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer SeeAlso: PORT 82E8h -----V-MA00083B0-----MEM A000h: 83B0h - S3 - MEMORY-MAPPED VGA REGISTERS Size: 48 BYTFs Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer SeeAlso: PORT 03B0h,PORT 03C0h,PORT 03D0h -----V-MA0008504-----MEM A000h: 8504h - S3 ViRGE - MEMORY-MAPPED SUBSYSTEM REGISTERS Size: 12 BYTEs Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer Format of S3 memory-mapped subsystem registers: Offset Size Description (Table M0071) 8504h DWORD subsystem Control/Status Register (see PORT 42E8h, PORT 9AE8h) bit 13 indicates whether graphics processor is busy bits 12-8 indicate number of free FIFO slots 8508h DWORD ??? 850Ch DWORD advanced function control (see PORT 4AE8h)

```
MEM A000h: 8580h - S3 - MEMORY-MAPPED DMA REGISTERS
Size:
      32 BYTEs
Note: the S3 graphics processor registers can be mapped at either
       linear 000A0000h or at offset 16M from the start of the linear
       frame buffer
Format of S3 memory-mapped DMA registers:
Offset Size
             Description
                         (Table M0072)
8580h DWORD
                    start address in system memory
                    transfer length
8584h DWORD
8588h DWORD
                    transfer enable
858Ch DWORD
                    ???
8590h DWORD
                    DMA base address
8594h DWORD
                    DMA write pointer
8598h DWORD
                    DMA read pointer
859Ch DWORD
                    DMA enable
SeeAlso: #M0057, #M0073
-----V-MA00086E8------
MEM A000h: 86E8h - S3 - MEMORY-MAPPED ENHANCED REGISTERS
Size: ? BYTEs
Note: the S3 graphics processor registers can be mapped at either
       linear 000A0000h or at offset 16M from the start of the linear
       frame buffer
-----V-MA000A000-----
MEM A000h: A000h - S3 - MEMORY-MAPPED COLOR PALETTE REGISTERS
Size:
      448 BYTEs
      the S3 graphics processor registers can be mapped at either
Note:
       linear 000A0000h or at offset 16M from the start of the linear
       frame buffer
-----V-MA000A4D4-----
MEM A000h: A4D4h - S3 - MEMORY-MAPPED BLT-FILL REGISTERS
Size: 60 BYTEs
Note: the S3 graphics processor registers can be mapped at either
       linear 000A0000h or at offset 16M from the start of the linear
       frame buffer
A4D4h DWORD
                    ???
A4D8h DWORD
                    ???
A4DCh DWORD
                    ??? (set to 07FFh by S3 32.DLL)
A4E0h DWORD
                    ??? (set to 07FFh by S3_32.DLL)
A4E4h DWORD
                    ???
                    ???
A4E8h DWORD
A4ECh DWORD
                    ???
A4F0h
A4F4h DWORD
                    ???
A4F8h
A4FCh DWORD
                    ???
```

-----V-MA0008580-----

```
A500h DWORD
                    ???
A504h DWORD
                    ???
A508h DWORD
                    ???
A50Ch DWORD
                    ???
-----V-MA000A8D4-----
MEM A000h: A8D4h - S3 - MEMORY-MAPPED LINE REGISTERS
Size: 172 BYTEs
Note: the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
-----V-MA000ACD4-----
MEM A000h: ACD4h - S3 - MEMORY-MAPPED POLYGON-FILL REGISTERS
Size:
       172 BYTEs
Note: the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
-----V-MA000B0D4-----
MEM A000h: B0D4h - S3 - MEMORY-MAPPED 3D-LINE REGISTERS
Size: 172 BYTEs
Note:
      the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
-----V-MA000B4D4-----
MEM A000h: B4D4h - S3 - MEMORY-MAPPED 3D-TRIANGLE REGISTERS
Size:
      172 BYTEs
Note:
      the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
-----V-MA000FF00-----
MEM A000h: FF00h - S3 - MEM-MAPPED "SCENIC HIGHWAY" (Local Periph. Bus) ACCESS
Size: 64 DWORDs
Note:
      the S3 graphics processor registers can be mapped at either
        linear 000A0000h or at offset 16M from the start of the linear
        frame buffer
SeeAlso: MEM A000h:8180h
Format of S3 Local Peripheral Bus memory-mapped registers:
Offset Size Description
                           (Table M0073)
FF00h DWORD
                    LPB mode (see #M0074)
FF04h DWORD
                    LPB FIFO status (see #M0075)
FF08h DWORD
                    interrupt status (see #M0076)
FF0Ch DWORD
                    frame buffer address 0 (bits 21-0, multiple of 8)
              offset within frame buffer at which to store incoming data from
               LPB when Streams Processor double-buffer control (see #M0065)
               bit 4 clear
FF10h DWORD
                     frame buffer address 1 (bits 21-0, multiple of 8)
              offset within frame buffer at which to store incoming data from
               LPB when Streams Processor double-buffer control (see #M0065)
```

```
bit 4 is set
                      "direct address" = index for FF18h (see #M0077)
FF14h DWORD
FF18h DWORD
                      "direct data" (see #M0077)
               Note: the direct address/direct data registers presumably rely
                on the attached device inserting data into the digital video
                stream, as on a Diamond Stealth64 Video, the "direct data"
                appears to reflect the video stream data (i.e. it varies, but
                with a pattern that depends on the video image, and stops
                varying when video is frozen)
                      general purpose I/O (see #M0078)
FF1Ch DWORD
                      LPB serial port -- I2C/DDC access (see #M0079)
FF20h DWORD
FF24h DWORD
                      input window size (high word = rows, low word = columns)
FF28h DWORD
                      data offsets
               (video alignment; high word = rows; low word = columns)
FF2Ch DWORD
                      horizontal decimation
               bits 0-31 set indicate that bytes 0-31 (mod 32)
                of each line should be dropped (in Video16 mode, each bit
                controls a WORD); decimation is aligned with the start of
                line as specified by the data offsets at FF28h
FF30h DWORD
                      vertical decimation
               bits 0-31 set indicate that lines 0-31 (mod 32) should be
                dropped, i.e. setting this DWORD to 5555555h will drop
                every other line; decimation starts with VSYNC regardless
                of the data offsets specified at FF28h
FF34h DWORD
                      line stride (number of bytes between starts of successive lines
                of video data)
               must be multiple of 4 -- lowest two bits forced to 0
FF38h 3 DWORDs unused??? (seem to echo FF34h)
FF40h 8 DWORDs
                      LPB output FIFO - data transfer
               writing to ANY of these DWORDs transfers a value to the FIFO;
                this organization allows use of a REP MOVSD instruction to
                fill the FIFO
               on ISA bus, there must be a delay between successive writes
SeeAlso: #M0058
Bitfields for S3 Local Peripheral Bus LPB Mode register:
Bit(s) Description
                      (Table M0074)
       enable LPB
0
3-1
       LPB operational mode
       000 Scenic/MX2
       001 Video 16 (PCI only)
       010 Video 8 In
               used by Philips SAA7110/SAA7111 and Diamond's DTV1100
       011 Video 8 In/Out
               used by CL-480
       100 Pass-Through
               send FIFO data written by CPU through the decimation logic
```

else reserved (Trio64V+)

4	LBP Reset		
	pulse this bit before changing operational mode		
5	skip every other frame		
	=0 write all received frames to memory		
6	disable byte-swapping		
	=0 incoming 8-bit video is in order U, Y0, V, Y1 (CL-480)		
	=1 incoming 8-bit video is in order Y0, U, Y1, V (SAA711x)		
0.7	(refer to bit 26 below)		
8-7	officially reserved		
7 9	??? messes up video image when set LPB vertical sync input polarity		
9	=0 active low		
	=1 active low		
10	LPB horizontal sync input polarity		
10	=0 active low		
	=1 active high		
11	(write-only) CPU VSYNC		
	writing a 1 makes Trio act as if LPB VSYNC had been received		
12	(write-only) CPU HSYNC		
	writing a 1 makes Trio act as if LPB HSYNC had been received		
13	(write-only) load base address		
	writing a 1 causes an immediate load of the currently active base address		
15-14	reserved		
17-16	maximum compressed data burst, LPB to Scenic/MX2		
	00 one DWORD		
	01 two DWORDs		
	10 three DWORDs		
	11 burst until empty (must ensure that MX2's 8-entry FIFO is not overrun)		
	reserved		
	video FIFO threshold		
	number of filled slots at which to request that Trio's memory manager		
	begin to empty the FIFO (00 = one slot, 01 = two slots, 10 = four		
	slots, 11 = six slots)		
23	reserved (read-only)		
24	LPB clock source =0 driven by SCLK (Pin194) (for Trio64-compatibility mode)		
	=1 driven by LCLK (Pin148) (default)		
25	don't add line stride after first HSYNC within VSYNC		
23	must be set if first HSYNC occurs before VSYNC goes active		
26	invert LCLK (only has effect if bit 24 set)		
27	reserved		
28	(not yet on Trio64V+) current odd/even video field status		
29	(not yet on Trio64V+) field inversion - when set, the LPB's FIELD pin state is inverted before being reported in bit 28		
30	reserved		
31	(read-only) current state of CFLEVEL input (Pin182) in Video In/Out		

```
mode (refer to bits 3-1)
SeeAlso: #M0073
Bitfields for S3 Local Peripheral Bus LPB FIFO status:
       Description
                       (Table M0075)
31
       video FIFO 1 is almost empty (has exactly one full slot)
30
       video FIFO 1 is empty
29
       video FIFO 1 is full
28-23 reserved
       video FIFO 0 is almost empty (has exactly one full slot)
22
       video FIFO 0 is empty
21
20
       video FIFO 0 is full
19-14 reserved
13
       output FIFO is almost empty (has exactly one full slot)
12
       output FIFO is empty
       output FIFO is full
11
10-4 reserved
3-0
       number of free four-byte slots in FIFO (there are 8 slots)
SeeAlso: #M0073, #M0076
Bitfields for S3 Local Peripheral Bus interrupt status:
Bit(s) Description
                       (Table M0076)
31-25 reserved
24
       drive serial port clock line low on receipt of start condition
       (causes I2C wait states until interrupt handler responds to start cond)
23-20 reserved
       enable interrupt on I2C start condition detection
19
       enable interrupt on end of frame (VSYNC received)
18
17
       enable interrupt on end of line (HSYNC received)
       enable interrupt on LPB output FIFO empty
16
15-4
       reserved
3
       serial port detected I2C start condition
2
       VSYNC received (end of frame)
1
       HSYNC received (end of line)
0
       LPB output FIFO emptied
       bits 3-0 are write-clear: writing a 1 to a bit resets it
SeeAlso: #M0073, #P0721
(Table M0077)
Values for S3 Local Peripheral Bus "direct address" index:
0000h CP3 installation (FF18h reads 00C3h if installed)
0001h?
0002h?
0003h?
       bit 7: ???
       bits 6-0: ???
0004h?
0005h?
```

```
bits 7-0: ???
0020h ? (set to 107D4h, 1xxD4h by CP3.DLL))
0028h?
0034h? (set to 10000h by CP3.DLL)
0414h ? (set by CP3.DLL)
0500h?
0504h?
0508h?
050Ch?
0510h?
SeeAlso: #M0073
Bitfields for S3 Local Peripheral Bus General-Purpose I/O:
Bit(s) Description
                      (Table M0078)
3-0
       values to drive onto LPB GP output lines whenever CR5C is written
7-4
       values of GP input lines (read-only), latched whenever CR5C is read
       unused (read-only 0)
31-8
SeeAlso: #M0073
Bitfields for S3 Local Peripheral Bus serial-port register:
       Description
                      (Table M0079)
Bit(s)
0
       12C clock line [SCL] (write)
       =1 tri-state SCL, allowing other devices to pull it low
       12C data line [SDA] (write)
1
       =1 tri-state SDA, allowing other devices to pull it low
2
       12C clock line (read)
       this bit reflect the actual state of the SCL line
3
       I2C data line (read)
       this bit reflect the actual state of the SDA line
4
       enable I2C interface
       =0 disable bits 0/1, forcing both SCL and SDA to be tri-stated
15-5 reserved (unused)
20-16 mirrors of bits 4-0
       (these bits are on the data bus' byte lane 2 to make them accessible
        via I/O port 00E2h)
Notes: see file I2C.LST for details of the I2C device registers accessible
        through this interface (VPX3220A for Stealth64 Video 2001TV)
       when the feature connector is disabled on the Stealth64 Video, these
        bits are connected to the monitor's DDC data and clock lines
       the official documentation erroneously lists the mirrors in bits 12-8
        instead of 20-16
SeeAlso: #M0073,PORT 00E2h,#P0677
-----V-MB0000000-----
MEM B000h: 0000h - MDA TEXT BUFFER
       4096 BYTEs
Size:
-----V-MB0000000------
MEM B000h: 0000h - HGC+ RAMFont-MODE TEXT BUFFER
Size: 16384 BYTEs
```

```
in RAMFont Mode 1, the memory is filled with the usual
        character/attribute pairs; in RAMFont Mode 2, four bits of each
        'attribute' byte is used to provide 12 bits for specifying the
        character
-----V-MB0000000-----
MEM B000h: 0000h - HGC GRAPHICS BUFFER (PAGE 0)
      32768 BYTES
-----V-MB4000000-----
MEM B400h: 0000h - HGC+ RAMFont BUFFER
Size:
      4096 BYTEs
Notes: apparently write-only
      RAMFont Mode 1: 256 characters (8 bits each for char and attribute)
      RAMFont Mode 2: 3072 characters (12 bits for char, 4 bits for attrib)
      each character definition is 8 pixels wide (with 9th-column duplication
        if appropriate) by 8-16 pixels high
-----V-MB8000000------
MEM B800h:0000h - CGA TEXT/GRAPHICS BUFFER
Size: 16384 BYTEs
-----V-MB8000000-----
MEM B800h: 0000h - EGA/VGA+ TEXT BUFFER
Size: 32768 BYTEs
-----V-MB8000000-----
MEM B800h:0000h - HGC GRAPHICS BUFFER (PAGE 1)
Size: 32768 BYTEs
-----V-MBFF00000-----
MEM BEF0h: 0000h - ET4000/W32 ACL accelerator
Size: 169 BYTES
Format of ET4000/W32 memory-mapped registers:
Offset Size
                           (Table M0080)
             Description
                    MMU Registers: memory base pointer register 0 (see #M0081)
00h
      DWORD
                    MMU Registers: memory base pointer register 1 (see #M0081)
04h
      DWORD
08h
                    MMU Registers: memory base pointer register 2 (see #M0081)
      DWORD
OCh 7 BYTEs ???
             MMU Registers: MMU control register (see #M0082)
      BYTE
14h 28 BYTEs ???
30h
      BYTE Non-Queued Registers: suspend/terminate
31h
      BYTF
             Non-Queued Registers: operation state (see #M0083) (write-only)
             Non-Queued Registers: sync enable
32h
      BYTE
33h
      BYTE
             ???
             Non-Queued Registers: interrupt mask
34h
      BYTE
             Non-Queued Registers: interrupt status
35h
      BYTE
             Non-Queued Registers: ACL status (read-only)
36h
      BYTE
             bit 1: read status (RDST) 1=ACL active, queue not empty
             bit 0: write status (WRST) 1=queue full
37h 73 BYTEs ???
80h
      DWORD
                    Queued Registers: pattern address (see #M0084)
                    Queued Registers: source address (see #M0084)
84h
      DWORD
```

```
88h
       WORD Queued Registers: pattern Y offset (see #M0085)
8Ah
       WORD Queued Registers: source Y offset (see #M0085)
8Ch
       WORD Queued Registers: destination y offset (see #M0085)
8Eh
       BYTE
              Queued Registers: virtual bus size
8Fh
       BYTF
              Queued Registers: X/Y direction (see #M0086)
90h
       BYTE
              Queued Registers: pattern wrap (see #M0087)
91h
       BYTE
       BYTE
92h
              Queued Registers: source wrap (see #M0087)
93h
       BYTE ???
94h
       WORD Queued Registers: X position
96h
       WORD Queued Registers: Y position
98h
       WORD Queued Registers: X count (see #M0088)
9Ah
       WORD Queued Registers: Y count (see #M0088)
9Ch
       BYTE Queued Registers: routine control (see #M0089)
9Dh
       BYTE
              Queued Registers: reload control
9Eh
       BYTE
              Queued Registers: background ROP for mixing
       BYTE
9Fh
              Queued Registers: foreground ROP for mixing
       DWORD
                     Queued Registers: destination address
A0h
       DWORD
                      Queued Registers: internal pattern address
A4h
A8h
       DWORD
                     Queued Registers: internal source address
Bitfields for ET4000/W32 memory base pointer register:
Bit(s) Description
                     (Table M0081)
31-22 reserved
21-0 memory base pointer
SeeAlso: #M0080
Bitfields for ET4000/W32 MMU control register:
Bit(s) Description
                     (Table M0082)
7
       reserved
6-4
       linear address control (LAC)
        bit 6: MMU aperture 2
        bit 5: MMU aperture 1
        bit 4: MMU aperture 0
       reserved
t2-0
       aperture type (APT)
        bit 2: MMU aperture 2
        bit 1: MMU aperture 1
        bit 0: MMU aperture 0
SeeAlso: #M0080
Bitfields for ET4000/W32 operation state register:
Bit(s) Description
                     (Table M0083)
7-4
       reserved
3
       restart operation after ACL-interruption
2-1
       reserved
Ω
       restore status before ACL-interruption
SeeAlso: #M0080
```

```
Bitfields for ET4000/W32 memory address register:
Bit(s) Description
                        (Table M0084)
31-22 reserved
21-0 memory base pointer
SeeAlso: #M0080
Bitfields for ET4000/W32 offset register:
Bit(s) Description
                        (Table M0085)
15-12 reserved
11-0 Y offset
SeeAlso: #M0080
Bitfields for ET4000/W32 X/Y direction register:
Bit(s) Description
                       (Table M0086)
7-2
       reserved
1
        X direction
       Y direction
0
SeeAlso: #M0080
Bitfields for ET4000/W32 wrap register:
Bit(s) Description
                        (Table M0087)
7
       reserved
6-4
       pattern Y wrap
       000 = 1 \text{ line}
        001 = 2 \text{ lines}
        010 = 4 \text{ lines}
        011 = 8 \text{ lines}
        100 = reserved
        101 = reserved
        110 = reserved
        111 = no wrap
       reserved
3
2-0
        pattern X wrap
       000 = reserved
        001 = reserved
        010 = 4 \text{ byte}
        011 = 8 \text{ byte}
        100 = 16 \text{ byte}
        101 = 32 \text{ byte}
        110 = 64 \text{ byte}
        111 = no wrap
SeeAlso: #M0080
Bitfields for ET4000/W32 count register:
Bit(s) Description
                        (Table M0088)
15-12 reserved
11-0 pixel count
```

SeeAlso: #M0080 Bitfields for ET4000/W32 routine control register: Bit(s) Description (Table M0089) 7-6 reserved 5-4 routing of CPU address (ADRO) 00 don't use CPU address 01 CPU address is destination 10 reserved 11 reserved reserved 2-0 routing of CPU data (DARQ) 000 don't use CPU data 001 CPU data is source data 010 CPU data is mixed data 011 reserved 100 CPU data is x-count 101 CPU data is y-count 10x reserved SeeAlso: #M0080 -----V-MC0000000------MEM C000h: 0000h - VIDEO BIOS (EGA and newer) varies (usually 16K-24K for EGA, 24K-32K for VGA) Size: -----b-MC0000000------MEM C000h: 0000h OLIVETTI 640x400 GRAPHICS CARDS Size: 62 BYTEs SeeAlso: MEM 0040h:0088h"Olivetti" Format of Olivetti 640x480 ROM signatures: (Table M0133) Offset Size Description WORD 55AAh adapter ROM signature (check this!) 00h 10h 2 BYTEs "OL" if Olivetti EGA or VGA card 22h 2 BYTEs (Olivetti EGA/VGA) "VG" for Olivetti VGA (supports 640x400 mode) "EG" for Olivetti EGA including Olivetti EGA card 2 3Ch 2 BYTEs "PA" if Paradise card (supports 640x400 mode) Note: These signatures can aid in the presence detection of an EGA or VGA adapter supporting the 640x400 mode. Olivetti PC models M15 and M19 do not support the 640x400 mode (see INT 15h/C0h). To decide if the 640x400 mode is supported by an Olivetti EGA card (only the Olivetti EGA card 2 supports it), also check that bit 7 and 5 are set at 0040h:0088h. -----V-MC000xxxx-----MEM COOOh:xxxxh - VESA VBE ∨3.0 PROTECTED MODE INFORMATION BLOCK Size: 20 BYTEs

Range: starting at any byte within the first 32K of segment C000h

Format of VESA VBE 3.0 Protected Mode Information Block:

Offset Size Description (Table M0127)

00h 4 BYTEs signature "PMID"

O4h WORD offset of protected-mode entry point within BIOS WORD offset of protected-mode initialization entry point

08h WORD selector for BIOS data area emulation block

(default 0000h, must be set by protected-mode OS to 16-bit read/write data selector with limit of at least 0600h)

0Ah WORD selector to access physical memory at A0000h

(default A000h, must be set by protected-mode OS to 16-bit

read/write data selector with 64K limit)

0Ch WORD selector to access physical memory at B0000h

(default B000h, must be set by protected-mode OS to 16-bit

read/write data selector with 64K limit)

0Eh WORD selector to access physical memory at B8000h

(default B800h, must be set by protected-mode OS to 16-bit

read/write data selector with 32K limit)

10h BYTE protected-mode execution (default 00h; set to 01h by OS when

BIOS image is running in protected mode)

11h BYTE checksum byte for entire structure (this byte forces 8-bit

sum of all bytes to 00h)

-----h-mC0000000------

MEM C000000h - Weitek "Abacus" math coprocessor

Size: 4096 BYTEs

-----B-MC8000000-----

MEM C800h:0000h - HARD DISK BIOS

Size: varies (usually 8K or 16K)

-----V-MC8001C00-----

MEM C800h: 1C00h - IBM XGA, XGA/A - MEMORY-MAPPED REGISTERS

Range: any 8K boundary within segments C000h to DFFFh

Notes: The XGA memory mapped registers can be assigned to the last 1K block in in each 8K block in the range of C0000h-DFFFFh; the base offset of the 128 memory mapped lcoation for a particular XGA instance is Segment: (1C00h+instance*80h) for each XGA installed in a system (default instance is 6). The instance number may be read from the

XGA's Programmable Option Select registers

The XGA/A (PS/2 adapter) uses the 7KB area below the memory-mapped register area for ROM data; the XGA (PS/2 onboard) has included this area in it's video BIOS ROM.

Most of the memory mapped registers are from the graphics coprocessor, while the I/O-registers are for the display controller.

-----V-MC0007FF8-----

MEM C000h: 7FF8h - Matrox MGA Video Adapters - CARD VENDOR ID

Size: WORD

Desc: contains the PCI vendor ID for the card vendor; this is written into

Size:

4 BYTEs (or more) "OLIV"

the video controllers PCI subsystem-vendor-ID field SeeAlso: MEM C000h: 7FFAh, MEM C000h: 7FFCh -----V-MC0007FFA-----MEM COOOh: 7FFAh - Matrox MGA Video Adapters - HARDWARE REVISION ID SeeAlso: MEM C000h: 7FF8h, MEM C000h: 7FFCh -----V-MC0007FFC-----MEM C000h: 7FFCh - Matrox MGA Video Adapters - OFFSET OF PINS DATA STRUCTURE Size: WORD SeeAlso: INT 10/AX=4F14h"Matrox",#00126,MEM C000h:7FF8h -----b-MF0000000-----MEM F000h: 0000h - WANG PC MEMORY MAPPED SCREEN BUFFER Size: Note: This is used by Peter Reilley's portable binary editor and viewer BEAV to directly write into the Wang PC's video screen buffer (instead of using INT 10/AH=02h,09h) after it has been mapped in by writing BYTE 01h to the screen port (PORT 1010h for the 1st screen, 1020h for the 2nd, 1030h for the 3rd, 1040h for the 4th). It will be unmapped afterwards by writing BYTE 00h to the screen port. Note, that this is only necessary when the INT 21/AX=4402h detection method resulted in non-IBM PC characteristic (return values other than 11h). SeeAlso: MEM FC00h: 3FC2h, INT 88h/AL=01h, INT 21h/4402h -----B-MF0002DC5-----MEM F000h: 2DC5h - IBM AT SIGNATURE Size: ??? signature Note: Original IBM ATs with a multi-sector hard disk ROM-BIOS bug can be identified by checking a (currently unknown) signature at this location. This is known to be done by the Concurrent CP/M-86 family. Presumably the OS will then prohibit timer ISR dispatches within a code window of F000h: 2D95h..F000h: 2DD4h. -----A-MF0006000-----MEM F000h: 6000h - IBM PC ROM BASIC Size: 32768 BYTEs -----b-MF000800C-----MEM F000h: 800Ch ZENITH Size: 8 BYTEs signature "ZDS CORP" Note: Zenith machines may have 256 Kb extra memory at 0FA0000h linear. -----MF000C000-----MEM F000h: C000h - Tandy ROM BIOS ID BYTE Size: BYTF If the BYTE at this location is equal to 21h, some Microsoft software Note: assumes this is a Tandy machine, and for example trusts the bits 1-0 at 0040h:00B5h. SeeAlso: MEM 0040h:00B5h"Tandy",INT 15/AH=C0h -----b-MFC000050-----MEM FC00h:0050h - OLIVETTI Mxxx PC SIGNATURE

Note: used by several Olivetti PCs, including M15, M19 SeeAlso: INT 15/AH=C0h -----b-MFC003FC2-----MEM FC00h: 3FC2h - WANG PC SIGNATURE 4 BYTEs containing the signature "WANG" Note: This is used by Peter Reilley's portable binary editor and viewer BEAV to detect a Wang PC. SeeAlso: INT 88/AL=01h, INT 21/AX=4402h, INT 15/AH=C0h -----B-MF000F000-----MEM F000h: E000h - ORIGINAL IBM PC ROM BIOS Size: 8192 BYTEs -----b-MF000FFD9-----MEM F000h: FFD9h - EISA MACHINE ID Size: 4 BYTEs signature "EISA" SeeAlso: INT 15/AH=E801h -----b-MF000FFE0-----MEM F000h: FFE0h - COMPAQ 386 MACHINES Size: 16 BYTEs SeeAlso: MEM 80C00000h Format of Compag 386 Memory Configuration Data: Offset Size Description (Table M0134) WORD Compaq 32-bit extra built-in memory available (FFFFh if not) 00h 02h WORD Total size of Compag extra memory 04h WORD Count of available paragraphs of Compaq extra memory 06h WORD Paragraph address of last paragraph in use as Compag extra memory 08h 2 BYTEs product class signature "03" OAh 6 BYTEs signature "03COMPAQ" Notes: The full "03COMPAQ" signature can be found in (at least) Compag 386 machines which have dual harddisk controller. (see also CMOS 70h) However, the 6-byte "COMPAQ" signature also seems to be available in other Compag machines with dual hard disk controllers, at least the MS-DOS/PC DOS IO.SYS/IBMBIO.COM checks for if before it calls INT 15/AX=E400h and INT 15/AX=E480h. Compaq's extra memory is mappable memory starting at FE00h:0000h growing downwards. It can be made available for example with Novell DOS 7+ EMM386.EXE /COMPAQ=ON. Although this structure resides at a ROM-address it is actually writeprotected RAM. To write to the structure to map in Compag extra memory the write-protection must be temporarily disabled by setting bit 1 at WORD 80C00000h.

-----MF000FFE8-----

MEM F000h: FFE8h - Compag - MACHINE SIGNATURE STRING

Size: 8 BYTEs

Desc: if this area contains the ASCII string "03COMPAQ", then this is a

Compaq machine SeeAlso: CMOS 1Bh"AMI"

```
------H-MF000FFF0------
MEM F000h: FFF0h - RESET JUMP
Size:
      5 BYTEs
-----B-MF000FFF5-----
MEM F000h: FFF5h - ASCII BIOS DATE
Size:
      8 BYTEs
-----B-MF000FFFD-----
MEM F000h: FFFDh - OFTEN USED TO ENSURE CORRECT BIOS CHECKSUM
Size:
      BYTF
-----B-MF000FFFE-----
MEM F000h: FFFEh - MACHINE TYPE CODE
Size:
      BYTE
SeeAlso: INT 15/AH=C0h
-----X-MF000xxx0------
MEM F000h: xxx0h - PCI IRQ Routing Table Specification v1.0
      N paragraphs (N >= 2)
InstallCheck: scan for the signature string "$PIR" followed by a valid
        PCI IRQ Routing Table
Range: any paragraph boundary within the range F0000h to FFFFFh
Format of PCI IRQ Routing Table v1.0:
Offset Size
                           (Table M0090)
             Description
00h 4 BYTEs signature "$PIR"
04h
     WORD version (0100h for v1.0)
06h
      WORD table size in bytes
08h
      BYTE bus number for PCI Interrupt Router
09h
      BYTE
             device/function number for PCI Interrupt Router
     WORD bitmap of PCI-exclusive IRQs (bit 0 = IRQ0, etc.)
0Ah
      WORD PCI vendor ID for compatible PCI Interrupt Router
0Ch
      WORD PCI device ID for compatible PCI Interrupt Router
0Eh
10h
      DWORD
                    Miniport data
14h 11 BYTEs reserved (0)
1Fh
             checksum (set to make 8-bit sum of bytes in entire structure
              equal 00h)
--- optional data ---
20h 16 BYTEs first slot entry (see #M0091)
   16 BYTEs
             Nth slot entry
Format of PCI IRQ Routing Table slot entry:
Offset Size
             Description
                           (Table M0091)
00h
      BYTE PCI bus number
01h
      BYTE PCI device number (bits 7-3)
02h
      BYTE
             link value for INTA#
03h
     WORD IRQ bitmap for INTA#
05h
      BYTE link value for INTB#
06h
      WORD IRQ bitmap for INTB#
08h
      BYTE link value for INTC#
```

```
09h
       WORD IRQ bitmap for INTC#
0Bh
       BYTE link value for INTD#
0Ch
      WORD IRQ bitmap for INTD#
       BYTE slot number (00h = motherboard, other = vendor-specific)
0Fh
0Fh
       BYTF
SeeAlso: #M0090, #01260 at INT 1A/AX=B406h
-----B-MF000xxxx-----
MEM F000h: xxxxh - AWARD Flash Hook
Format of AWARD Flash BIOS interface:
Offset Size
            Description
                           (Table M0092)
00h 8 BYTEs signature "AWDFLASH"
08h
       WORD offset in F000h of FAR function: Get ???
              Return: BL = ??? (00h)
0Ah
       WORD offset in F000h of FAR function: ???
0Ch
       WORD offset in F000h of FAR function: ???
0Fh
       WORD offset in F000h of FAR function: ???
       WORD offset in F000h of FAR function: ???
10h
12h
       WORD offset in F000h of FAR function: Disable Shadowing
       WORD offset in F000h of FAR function: Enable Shadowing
14h
       WORD offset in F000h of FAR function: Get ???
16h
              Return: DS:SI -> ??? (30 bytes?)
18h
       WORD offset in F000h of FAR function: Set ???
              DS:SI -> ??? (appears to be same as previous function)
Note:
       the AWDFLASH utility copies the ROM from F000h and uses the copy
        instead of the original F000h: xxxxh addresses
-----B-MF000xxxx-----
MEM F000h: xxxxh - Asustek Flash Hook
Format of Asustek Flash interface:
Offset Size
              Description
                            (Table M0093)
00h 10 BYTEs signature "ASUS FLASH"
OAh 6 BYTEs blanks (padding)
10h
       WORD interface version??? (current PFLASH.EXE requires 0101h)
                     -> position-independent code to enable shadowing
12h
      WORD size of code pointed at by previous field (<= 0400h)
16h
18h
                     -> position-independent code to disable shadowing
1Ch
       WORD size of code pointed at by previous field (<= 0400h)
-----p-Mxxxxxxx0-----
MEM xxxxh: xxx0h - Advanced Configuration and Power Interface Spec (ACPI) v0.9+
Range: any paragraph boundary in the first kilobyte of the XBDA, the last
       kilobyte of conventional memory, or from E000h:0000h to F000h:FFE0h
       scan paragraph boundaries for the signature string "RSD PTR", followed
Note:
        by a valid Root System Description Pointer structure (see #M0094)
SeeAlso: INT 15/AX=E820h
!!!acpi\acpi10.pdf p.194
```

Format of ACPI Root System Description Pointer structure:

```
Offset Size
               Description
                              (Table M0094)
00h 8 BYTEs signature "RSD PTR"
08h
       BYTE
              checksum (entire structure, including this byte, must
                add up to zero)
09h 6 BYTEs OEM identifier
0Fh
       BYTE reserved (0)
10h
       DWORD
                      physical address of Root System Description Table (see #M0096)
SeeAlso: #M0096
Format of ACPI System Description Table header:
Offset Size
               Description
                              (Table M0095)
00h 4 BYTEs signature
04h
       DWORD
                      length of table in bytes, including this header
08h
       BYTE revision of specification corresponding to signature
               01h for both v0.9 and v1.0
09h
       BYTE
              checksum (set such that entire table sums to 00h)
OAh 6 BYTEs OEM identification
10h 8 BYTEs OEM table identifier
18h 4 BYTEs OEM revision number
---ACPI v1.0---
1Ch 4 BYTEs vendor ID for table-creation utility used
20h 4 BYTEs revision of table-creation utility
SeeAlso: #M0094, #M0096, #M0099, #M0097, #M0100, #M0105, #M0108, #M0110
Format of ACPI Root System Description Table:
Offset Size
               Description
                              (Table M0096)
00h 36 BYTEs System Description Table Header (see #M0095)
               signature "RSDT"
                      physical addresses of other description tables
24h N DWORDs
               (see #M0099, #M0097, #M0100, #M0105, #M0108, #M0109)
Notes: the number of table pointers is implied by the table length
        field in the header (at offset 04h)
       for ACPI v0.9, the header is eight bytes smaller and thus all
        following offsets are 8 less
SeeAlso: #M0094
Format of ACPI Fixed ACPI Description Table:
Offset Size
               Description
                              (Table M0097)
00h 36 BYTEs System Description Table Header (see #M0095)
               signature "FACP"
24h
       DWORD
                      physical address of the Firmware ACPI Control Structure
                (see #M0105)
                      physical address of the Differentiated System Description Table
28h
       DWORD
                (see #M0099)
2Ch
       BYTE
              interrupt mode
               00h dual PIC (industry-standard AT-type)
               01h multiple APIC (see #M0100)
               else reserved
```

2Dh	BYTE	reserved	
2Eh	WORD system vector of SCI interrupt		
30h	DWORD I/O port address of SMI command port		
34h	BYTE	value to write to SMI comamnd port to disable SMI ownership	
		of ACPI hardware registers	
35h	BYTE	value to write to SMI comamnd port to re-enable SMI ownership	
		of ACPI hardware registers	
36h	BYTE	(v1.0) value to write to SMI command port to enter S4BIOS state	
		00h if not supported	
37h	BYTE	reserved	
38h	DWOR		
3Ch	DWOR		
		(optional, 0000000h if not supported)	
40h	DWOR		
44h	DWOR	·	
		(optional, 0000000h if not supported)	
48h	DWOR	· ·	
		(optional, 0000000h if not supported)	
4Ch	DWORE		
50h	DWOR	·	
		(optional, 00000000h if not supported)	
54h	DWOR		
		(optional, 00000000h if not supported)	
58h	BYTE	size of Power Management 1a/1b Event Register Block (>= 4)	
59h	BYTE	size of Power Management 1a/1b Control Register Block (>= 1)	
5Ah	BYTE	size of Power Management 2 Control Register Block (>= 1)	
5Bh	BYTE	size of Power Management Timer Control Register Block (>= 4)	
5Ch	BYTE	size of Generic Purpose Event 0 Register Block (multiple of 2)	
5Dh	BYTE	size of Generic Purpose Event 1 Register Block (multiple of 2)	
5Eh	BYTE	offset within General Purpose Event model for GPE1-based events	
5Fh	BYTE	reserved	
60h	WORD	worst-case hardware latency (microseconds) for entering/leaving	
		state C2; >100 if C2 not supported	
62h	WORD	worst-case hardware latency (microseconds) for entering/leaving	
		state C3; >1000 if C3 not supported	
64h	WORD	size of contiguous cacheable memory which must be read to flush	
		all dirty lines from a processor's memory cache; use if	
		fixed feature flag WBINVD (see #M0098) is clear	
		0000h if flushing not supported	
66h	WORD	memory stride size (in bytes) to flush processor's memory cache	
68h	BYTE	bit index of processor's duty cycle setting within the	
		processor's P_CNT register	
69h	BYTE	size of processor's duty cycle setting in bits	
6Ah	BYTE	index within RTC CMOS RAM of the day-of-month alarm value	
		00h = not supported	
6Bh	BYTE	index within RTC CMOS RAM of the month-of-year alarm value	
		00h = not supported	
6Ch	BYTF	index within RTC CMOS RAM of the century alarm value	

```
00h = not supported
       BYTE
6Dh
              reserved
6Eh
       DWORD
                      fixed feature flags (see #M0098)
SeeAlso: #M0094,CMOS 7Dh,CMOS 7Eh,CMOS 7Fh
Bitfields for ACPI Fixed Feature Flags:
Bit(s)
       Description
                      (Table M0098)
0
       WBINVD instruction is correctly supported by processor
1
       WBINVD instruction flushes all caches and maintains coherency, but
        does not guarantee invalidation of all caches
2
       all processors support C1 sleep state
3
       C2 sleep state is configured to work on multiprocessor system
---v0.9---
4
       power button is handled as a generic feature
5
       RTC wake-up state is not supported in fixed register space
6
       TMR VAL size
       =0 24 bits
       =1 32 bits
7-31 reserved
---v1.0---
4
       power button is handled as a control method device
5
       =0 sleep button is handled as a fixed feature programming mode
       =1 control method device, or no sleep button
6
       RTC wake-up state is not supported in fixed register space
7
       RTc alarm can wake system from S4 state
       TMR_VAL size
       =0 24 bits
       =1.32 bits
9-31 reserved
SeeAlso: #M0097
Format of ACPI Differentiated System Description Table:
Offset Size
                              (Table M0099)
               Description
00h 36 BYTEs System Description Table Header (see #M0095)
               signature "DSDT"
24h
               complex byte stream; refer to ACPI document and software
SeeAlso: #M0094
Format of ACPI Multiple APIC Description Table:
                              (Table M0100)
Offset Size
               Description
00h 36 BYTEs System Description Table Header (see #M0095)
               signature "APIC"
24h
       DWORD
                      physical address of the local APIC in each processor's address
                space
28h
       DWORD
                      multiple-APIC flags (see #M0101)
2Ch 12N BYTEs
                      APIC structures (see #M0102, #M0104)
               first byte of each is type, second is length; types other than
                00h and 01h are currently reserved and should be skipped
```

SeeAlso: #M0094 Bitfields for ACPI Multiple APIC Description Table flags: (Table M0101) Bit(s) Description 0 system contains AT-compatible dual 8259 interrupt controllers in addition to APICs 1-31 reserved (0) SeeAlso: #M0100 Format of ACPI Local APIC Structure: Offset Size Description (Table M0102) 00h BYTE structure type (00h = Processor Local APIC) 01h BYTE length of this structure (0Ch for v0.9, 08h for v1.0) 02h BYTE processor ID 03h BYTE processor's local APIC ID ---v0.9---04hDWORD physical address of APIC 08h DWORD flags (TBD) --v1.0---04h DWORD flags (see #M0103) SeeAlso: #M0100, #M0104 Bitfields for ACPI Local APIC flags: Bit(s) Description (Table M0103) 0 APIC enabled 1-31 reserved (0) SeeAlso: #M0102 Format of ACPI I/O APIC Structure: Offset Size Description (Table M0104) structure type (00h = Processor Local APIC) 00h BYTE 0Ch (length of this structure) 01h BYTE 02h BYTE I/O APIC's ID 03h BYTE reserved (0) 04h DWORD physical address of the APIC **DWORD** number of first system interrupt vector for APIC 08h SeeAlso: #M0100, #M0102 Format of ACPI Firmware ACPI Control Structure: Offset Size Description (Table M0105) 00h 4 BYTEs signature "FACS" 04h DWORD length of entire structure in bytes (>= 40h) value of system's hardware signature at last boot 08hDWORD real-mode ACPI OS waking vector 0Ch **DWORD** if nonzero, control is transferred to this address on next BIOS **POST** 10h DWORD global lock (see #M0107) (v1.0) firmware control structure flags (see #M0106) 14h DWORD

18h 44 BYTEs reserved (0) Notes: this structure is located on a 64-byte boundary anywhere in the first 4GB of memory the BIOS is required to omit the address space containing this structure from system memory in the system's memory map SeeAlso: #M0094,INT 15/AX=E820h Bitfields for ACPI Firmware Control Structure Feature flags: Bit(s) Description (Table M0106) system supports S4BIOS_REQ 0 =0 operating system must save/restore memory state in order to go to S4 1-31 reserved (0) SeeAlso: #M0105 Bitfields for ACPI Embedded Controller Arbitration Structure: Bit(s) Description (Table M0107) request for Global Lock ownership is pending 0 Global Lock is currently owned 2-31 reserved SeeAlso: #M0105 Format of ACPI Persistent System Description Table: Offset Size Description (Table M0108) 00h 36 BYTEs System Description Table Header (see #M0095) signature "PSDT" 24h complex byte stream; refer to ACPI document and software SeeAlso: #M0094 Format of ACPI Secondary System Description Table: Description (Table M0109) Offset Size 00h 36 BYTEs System Description Table Header (see #M0095) signature "SSDT" 24h complex byte stream; refer to ACPI document and software SeeAlso: #M0094 Format of ACPI Smart Battery Description Table: Offset Size Description (Table M0110) 00h 36 BYTEs System Description Table Header (see #M0095) signature "SBST" 24h **DWORD** energy level in mWh at which system should warn user 28h energy level in mWh at which system should automatically enter DWORD sleep state energy level in mWh at which system should perform an emergency 2Ch DWORD shutdown SeeAlso: #M0094 -----Mxxxxxxx0-----MEM xxxxh:xxx0h - BIOS32 Service Directory

InstallCheck: scan paragraph boundaries E000h to FFFFh for signature string

```
"_32_", followed by a valid header structure (see #F0021)
SeeAlso: CALL xxxxh: xxxxh"BIOS32"
-----Mxxxxxxx0-----
MEM xxxxh: xxx0h - Desktop Management Interface / System Management BIOS
InstallCheck: scan paragraph boundaries F000h to FFFFh for signature string
         " DMI ", followed by a valid header structure (see #M0111, #M0112)
Format of Desktop Management Interface entry-point structure:
Offset Size
              Description
                             (Table M0111)
00h 5 BYTEs signature "_DMI_"
05h
      BYTE checksum of this structure (forces 8-bit sum of bytes to 00h)
06h
       WORD total length of SMBIOS structure table, in bytes
08h
       DWORD
                     32-bit physical address of read-only SMBIOS structure table
              (see #F0059)
0Ch
       WORD number of SMBIOS structures
0Eh
             BCD SMBIOS revision (high nybble = major, low = minor)
!!!ftp://download.intel.com/ial/wfm/smbios.pdf
SeeAlso: #M0112
Format of System Management BIOS entry-point structure:
Offset Size
              Description
                             (Table M0112)
00h 4 BYTEs signature "_SM_"
04h
       BYTE checksum of this structure (forces 8-bit sum of bytes to 00h)
05h
       BYTE length of structure in bytes (1Fh for v2.1+)
06h
       BYTE major version of specification
07h
       BYTE minor version of specification (01h = vX.1, 16h = vX.22)
      WORD size of largest SMBIOS structure (see also #F0046)
08h
       BYTE revision of this data structure
OAh
              00h SMBIOS v2.1-2.3
              01h-FFh reserved for future versions
OBh 5 BYTEs revision-specific data (currently unused)
10h 5 BYTEs intermediate anchor string "_DMI_"
15h
       BYTE checksum of intermediate entry-point structure
              (forces 8-bit sum of bytes 10h-1Eh to 00h)
       WORD total length of SMBIOS structure table, in bytes
16h
18h
       DWORD
                     32-bit physical address of read-only SMBIOS structure table
              (see #F0059)
1Ch
       WORD number of SMBIOS structures
1Eh
       BYTE
              BCD SMBIOS revision (high nybble = major, low = minor)
              00h if specification version only given in bytes 06h/07h
       due to an error in the v2.1 specification, some implementations might
BUG:
        indicate a length of 1Eh bytes instead of 1Fh
SeeAlso: #M0111
-----Mxxxxxxx0-----
MEM xxxxh:xxx0h - Multiprocessor Specification - FLOATING POINTER STRUCTURE
InstallCheck: scan paragraph boundaries for the signature string "_MP_",
        followed by a valid floating pointer structure (see #M0113)
Range: any paragraph boundary in the first kilobyte of the XBDA, the last
```

kilobyte of conventional memory, or from F000h:0000h to F000h:FFE0h SeeAlso: MEM FEE00000h

```
Format of Multiprocessor Specification Floating Pointer structure:
               Description
                              (Table M0113)
00h 4 BYTEs signature "_MP_"
04h
       DWORD
                      physical address of MP configuration table (see #M0114)
               0000000h if no configuration table
08h
       BYTE
               length of this structure in paragraphs (currently 01h)
09h
       BYTE
               revision of MP specification supported
               01h = v1.1
               04h = v1.4
0Ah
       BYTE
               checksum (8-bit sum of entire structure, including this
                byte, must equal 00h)
0Bh
       BYTE
               MP feature byte 1: system configuration type
               00h: MP configuration table present
               nonzero: default configuration implemented by system
0Ch
       BYTE
               MP feature byte 2
               bit 7: IMCR present
               bits 6-0: reserved (0)
ODh 3 BYTEs MP feature bytes 3-5 (reserved, must be 00h)
Format of Multiprocessor Specification configuration table header:
Offset Size
               Description
                              (Table M0114)
00h 4 BYTEs signature "PCMP"
04h
       WORD length of base configuration table in bytes, including
                this header
06h
       BYTE
               revision of MP specification supported
               01h = v1.1
               04h = v1.4
07h
       BYTE
               checksum of entire base configuration table
08h 8 BYTEs OEM identifier
10h 12 BYTEs product ID
1Ch
       DWORD
                      physical address to OEM-defined configuration table
               0000000h if not present
20h
       WORD size of base OEM table in bytes (0000h if not present)
22h
       WORD number of entries in variable portion of base table
24h
       DWORD
                      address of local APIC (see also MEM FEE0h:0020h)
28h
       WORD length of extended entries following end of base table
                (in bytes)
2Ah
       BYTF
               checksum for extended table entries (includes only
                extended entries following base table)
2Ch
       var
               configuration table entries (see #M0115)
SeeAlso: #M0113
Format of Multiprocessor Specification configuration table entries:
Offset Size
               Description
                              (Table M0115)
00h
       BYTE
               entry type code
```

```
00h processor
              01h bus
              02h I/O APIC
              03h I/IO interrupt assignment
              04h local interrupt assignment
              80h system address space mapping
              81h bus hierarchy descriptor
              82h compatibility bus address space modifier
---processor---
01h
       BYTE
              local APIC identifier
02h
       BYTE local APIC version
03h
       BYTE CPU flags
              bit 0: processor usable
              bit 1: bootstrap processor
04h
       WORD CPU type
              bits 11-8: CPU family
              bits 7-4: CPU model
              bits 3-0: stepping
              (bits 11-0 all set indicate non-Intel-compatible CPU)
06h 2 BYTEs unused
                      feature flags (as returned by Pentium CPUID instruction)
08h
       DWORD
OCh 8 BYTEs reserved
---bus---
01h
              bus ID (assigned sequentially from 00h by BIOS)
       BYTE
02h 6 BYTEs bus type (blank-padded ASCII string) (see #M0116)
---I/O APIC---
01h
       BYTE
              APIC identifier
02h
       BYTE APIC version
03h
       BYTE I/O APIC flags
              bit 0: enabled
              bits 7-1: reserved
04h
       DWORD
                      base address for APIC
---I/O, local interrupt assignment---
01h
       BYTE
              interrupt type
              00h vectored interrupt (from APIC)
              01h NMI
              02h system management interrupt
              03h vectored interrupt (from external PIC)
02h
       BYTE
              APIC control (see #M0117)
03h
       BYTE
              unused
04h
       BYTE
              source bus identifier
05h
       BYTE
              source bus IRQ
06h
       BYTE
              destination I/O APIC identifier
07h
       BYTE
              destination I/O APIC interrupt pin number
---system address space mapping---
01h
       BYTE
              entry length (14h)
       BYTE
02h
              bus ID
03h
       BYTE
              address type (00h I/O, 01h memory, 02h prefetch)
```

```
04h
       OWORD
                      starting address of region visible to bus
0Ch
       QWORD
                      length of region visible to bus
---bus hierarchy descriptor---
              entry length (08h)
       BYTE
01h
02h
       BYTF
              bus ID
03h
       BYTE
              bus information
              bit 0: subtractive decoding
       BYTE
04h
              ID of parent bus
05h 3 BYTEs reserved
---compatibility bus address space modifier---
              entry length (08h)
01h
       BYTE
02h
       BYTE
              bus ID
03h
       BYTE
              address modifier
               bit 0: remove address ranges in predefined range list from
                       bus's address space
04h
       DWORD
                      number indicating predefined address space range to be removed
               00h ISA-compatible I/O range (x100h-x3FFh and aliases)
               01h VGA-compatible I/O range (x3B0h-x3BBh,x3C0h-x3DFh,aliases)
SeeAlso: #M0114
(Table M0116)
Values for Multiprocessor Specification bus name:
"CBUS"
                      Corollary CBus
"CBUSII"
               Corollary CBus II
"EISA"
"FUTURE"
               IFFF FutureBus
"INTERN"
               internal bus
"ISA"
"MBI"
              Multibus I
              Multibus II
"MBII"
"MCA"
              Microchannel
"MPI"
"MPSA"
"NUBUS"
               Apple Macintosh NuBus
"PCI"
"PCMCIA"
"TC"
               DEC TurboChannel
"VI "
               VESA Local Bus
"VME"
               VMEbus
"XPRESS"
               Express System Bus
SeeAlso: #M0115
Bitfields for Multiprocessor Specification APIC control:
Bit(s)
      Description
                      (Table M0117)
       input signal polarity
1-0
       00 conforms to bus specification
       01 active high
       10 reserved
```

```
11 active low
3-2
       trigger mode
       00 conforms to bus specification
       01 edge-triggered
       10 reserved
       11 level-triggered
SeeAlso: #M0115
------H-mFEC00000------
MEM FECO0000h - Pentium - 82379AB I/O APIC - I/O REGISTER SELECT
Size:
       DWORD
Desc: bits 7-0 of the I/O Register Select memory location specify which
        of the APIC's registers appears in the I/O Window at FExxx010h
Range: the Multiprocessor Specification calls for I/O APICs to be memory-
        mapped on 4K boundaries between FEC00000h and FEDFC000h; the Intel
        82379AB I/O APIC can be memory-mapped on any 1K boundary within
        FEC0000h-FEC0F800h
Note: this memory-mapped register is also supported by the Intel 82093AA
        I/O APIC
SeeAlso: MEM FEC00010h,MEM FEE00000h,MEM xxxxh:xxx0h"Multiprocessor"
------H-mFEC00010------
MEM FECO0010h - Pentium - 82379AB I/O APIC - I/O WINDOW
Size:
       DWORD
Range: the Multiprocessor Specification calls for I/O APICs to be memory-
        mapped on 4K boundaries between FEC00000h and FEDFC000h
Note:
      this memory-mapped register is also supported by the Intel 82093AA
        I/O APIC
SeeAlso: MEM FEC00010h
(Table M0118)
Values for Intel 82379AB/82093AA I/O APIC registers:
00h
      APIC ID
01h
       APIC version (read-only)
       bits 31-24: reserved
       bits 23-16: maximum redirection entry
       bits 15-8: reserved
       bits 7-0: APIC version (11h for 82093AA)
02h
       APIC arbitration ID (read-only)
       bits 31-28: reserved
       bits 27-24: arbitration ID
       bits 23-0: reserved
              redirection table entry 0 (10h=low DWORD, 11h=high DWORD)
10h-11h
              redirection table entry 1 (see !!!)
12h-13h
              redirection table entry 15
2Eh-2Fh
---82093AA only---
30h-31h
              redirection table entry 16
3Eh-3Fh
              redirection table entry 23
```

```
Bitfields for APIC redirection table entry:
Bit(s) Description
                     (Table M0119)
63-56 destination
!!!29056601.pdf pg. 10
55-17 reserved
16
      interrupt mask
15
       trigger mode
14
      remote IRR (read-only)
      interrupt input pin polarity
13
       delivery status (read-only)
12
11
      destination mode
10-8 delivery mode
7-0
      interrupt vector (10h-FEh)
------H-mFEE00000------
MEM FEE00000h - Pentium - LOCAL APIC
Size:
      4096 BYTES
Notes: the Advanced Programmable Interrupt Controller built into
        multiprocessor-capable Pentiums (P54C, etc. -- basically 75MHz and
        faster Pentiums) maps its registers into the top of the physical
        address space on data reads and writes, but not on code reads:
        data accesses to the APIC registers do not cause external bus
        cycles
       the APIC's registers are only visible when the APIC is enabled (which
        occurs at CPU reset when external data lines contain proper signals);
        all accesses to APIC registers should use 32-bit reads or writes, as
        8-bit and 16-bit accesses may produce unpredictable results
       the PentiumPro (P6) permits the address at which the local APIC
        appears to be changed with Model-Specific Register 0000001Bh
SeeAlso: MEM FEC00000h, MEM FEE00020h, MEM xxxxh: xxx0h"Multiprocessor"
SeeAlso: MSR 0000001Bh
------H-mFEE00020------
MEM FEE00020h - Pentium - LOCAL APIC - LOCAL APIC ID REGISTER
Size:
      DWORD
SeeAlso: MEM FEE00030h
------H-mFEE00030-----
MEM FEE00030h - Pentium - LOCAL APIC - LOCAL APIC VERSION REGISTER
Size:
      DWORD
Note: read-only
SeeAlso: MEM FEE00020h
------H-mFEE00040------
MEM FEE00040h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
------H-mFEE00050------
MEM FEE00050h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
------H-mFEE00060------
MEM FEE00060h - Pentium - LOCAL APIC - RESERVED
```

```
SeeAlso: MEM FEE00000h
------H-mFEE00070------
MEM FEE00070h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
------H-mFFF00080------
MEM FEE00080h - Pentium - LOCAL APIC - TASK PRIORITY REGISTER (TPR)
Size: DWORD
------H-mFEE00090-----
MEM FEE00090h - Pentium - LOCAL APIC - ARBITRATION PRIORITY REGISTER (APR)
Size: DWORD
Note: read-only
------H-mFEE000A0-----
MEM FEE000A0h - Pentium - LOCAL APIC - END OF INTERRUPT REGISTER (EOI)
Size: DWORD
Note: write-only
-----H-mFEE000A0------
MEM FEE000A0h - Pentium - LOCAL APIC - PROCESSOR PRIORITY REGISTER (PPR)
Size: DWORD
Note: read-only
SeeAlso: MEM FEE00000h
------H-mFEE000B0------
MEM FEE000B0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
-----H-mFEE000C0------
MEM FEE000C0h - Pentium - LOCAL APIC - REMOTE READ REGISTER
Size: DWORD
Note: read-only
------H-mFEE000D0------
MEM FEE000D0h - Pentium - LOCAL APIC - LOGICAL DURATION REGISTER (LDR)
Size: DWORD
SeeAlso: MEM FEE00000h
------H-mFEE000E0------
MEM FEE000E0h - Pentium - LOCAL APIC - DESTINATION FORMAT REGISTER (DFR)
Size:
     DWORD
      bits 27-0: read-only
      bits 31-28: read-write
------H-mFEE000F0------
MEM FEE000F0h - Pentium + - LOCAL APIC - SPURIOUS INTERRUPT VECTOR REGISTER
Size: DWORD
Bitfields for Local APIC Spurious Interrupt Vector register:
Bit(s) Description (Table M0126)
63-10 reserved
      disable focus processor checking during lowest-priority delivery
8
      APIC enabled by software
7-4
     spurious vector number
3-0 reserved (1)
------H-mFEE00100-----
```

```
MEM FEE00100h - Pentium + - LOCAL APIC - IN-SERVICE REGISTER (ISR)
Size:
      128 BYTEs
Note: read-only
SeeAlso: MEM FEE00200h
------H-mFFF00180-----
MEM FEE00180h - Pentium + - LOCAL APIC - TRIGGER MODE REGISTER (TMR)
Size: 128 BYTEs
Note: read-only
SeeAlso: MEM FEE00000h
------H-mFEE00200------
MEM FEE00200h - Pentium + - LOCAL APIC - INTERRUPT REQUEST REGISTER (IRR)
Size: 128 BYTEs
Note: read-only
SeeAlso: MEM FEE00100h
------H-mFEE00280------
MEM FEE00280h - Pentium + - LOCAL APIC - ERROR STATUS REGISTER
Size: DWORD
Note: read-only
Bitfields for Pentium APIC error status register:
                    (Table M0120)
Bit(s) Description
0
      send checksum error
1
      receive checksum error
2
      send accept error
3
      receive accept error
4
     reserved
5
      send illegal vector
6
      receive illegal vector
7
      illegal register address
31-8 reserved
------H-mFEE00300-----
MEM FEE00300h - Pentium + - LOCAL APIC - INTERRUPT COMMAND REGISTER (ICR)
Size:
     DWORD
Note: this is the low half of the 64-bit ICR
SeeAlso: MEM FEE00310h, #M0121
Bitfields for Pentium APIC Interrupt Command Register:
Bit(s) Description
                   (Table M0121)
7-0
      interrupt vector number
10-8 delivery mode (see #M0122)
      destination mode
11
12
      delivery status (read-only)
      1 = transfer pending
13
      reserved
14
      level (0 = INIT Level Deassert message, 1 = anything else)
15
      trigger mode (1)
17-16 remote read status (read-only)
19-18 destination shorthand
```

```
00 as specified by destination field
      01 self
      10 all including self
      11 all except self
55-20 reserved
63-56 destination for interrupt request or message
SeeAlso: #M0124
(Table M0122)
Values for Pentium APIC delivery mode:
000b fixed
001b lowest-priority
010b SMI
011b remote read
100b NMI
101b INIT
110b start up
111b reserved
SeeAlso: #M0121
------H-mFEE00310------
MEM FEE00310h - Pentium + - LOCAL APIC - INTERRUPT COMMAND REGISTER (ICR)
Size: DWORD
Note: this is the high half of the 64-bit ICR
SeeAlso: MEM FEE00300h,#M0121
------H-mFEE00320------
MEM FEE00320h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 0 (TIMER)
Size:
      DWORD
SeeAlso: MEM FEE00350h, MEM FEE00370h, MEM FEE003E0h, INT 70h
Bitfields for Pentium APIC timer local vector entry:
Bit(s) Description (Table M0123)
7-0
      interrupt vector number
11-8 reserved
12
      delivery status (read-only)
      1 = interrupt being sent to APIC
15-13 reserved
      interrupt delivery disabled
      timer mode (0=one-shot, 1=periodic)
17
31-18 reserved
SeeAlso: #M0125, #M0124
-----H-mFEE00330------
MEM FEE00330h - Pentium + - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
------H-mFEE00340-----
MEM FEE00340h - Pentium + - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
------H-mFEE00350-----
MEM FEE00350h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 1 (LINTO)
```

Size: **DWORD** SeeAlso: MEM FEE00320h, MEM FEE00360h Bitfields for Pentium APIC LINTx local vector entry: Bit(s) Description (Table M0124) 7-0 interrupt vector number 10-8 delivery mode 000 fixed 100 NMI 111 external interrupt (8259A-compatibility) 11 reserved 12 delivery status (read-only) 1 = interrupt being sent to APIC 13 interrupt pin is active low 14 remote IRR 15 trigger mode 0 edge-sensitive 1 level-sensitive 16 interrupt delivery disabled 31-17 reserved SeeAlso: #M0123 ------H-mFEE00360-----MEM FEE00360h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 2 (LINT1) Size: DWORD SeeAlso: MEM FEE00350h, MEM FEE00370h, #M0124 ------H-mFFF00370------MEM FEE00370h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 3 (Error) Size: DWORD SeeAlso: MEM FEE00320h.MEM FEE00370h ------H-mFEE00380-----MEM FEE00380h - Pentium + - LOCAL APIC - INITIAL COUNT REGISTER (ICR) TIMER Size: Desc: timer start value, which together with the Divide Configuration Register also determines its period when periodic mode has been selected SeeAlso: MEM FEE00000h, MEM FEE00390h ------H-mFEE00390------MEM FEE00390h - Pentium + - LOCAL APIC - CURRENT COUNT REGISTER (CCR) TIMER Size: DWORD Desc: current timer count; when this value reaches zero, an interrupt is generated Note: read-only SeeAlso: MEM FEE00380h ------H-mFEE003A0------MEM FEE003A0h - Pentium - LOCAL APIC - RESERVED SeeAlso: MEM FEE00000h ------H-mFEE003B0------MEM FEE003B0h - Pentium - LOCAL APIC - RESERVED

```
SeeAlso: MEM FEE00000h
-----H-mFEE003C0-----
MEM FEE003C0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
-----H-mFEE003D0------
MEM FEE003D0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
------H-mFEE003E0-----
MEM FEE003E0h - Pentium + - LOCAL APIC - TIMER DIVIDE CONFIGURATION REGISTER
Size:
      DWORD
SeeAlso: MEM FEE00000h, MEM FEE00320h
Bitfields for Pentium (and later) APIC timer divide configuration:
                   (Table M0125)
Bit(s) Description
31-4 reserved
3,1,0 divisor
      000 divide by 2
      001 by 4
      010 by 8
      110 by 128
      111 by 1
2
      zero (0)
Note:
      the divisor determines the timer's time base relative to the processor
       clock
SeeAlso: #M0123
-----MFFFF0010-----
MEM FFFFh: 0010h - HIGH MEMORY AREA (HMA)
Size: 65520 BYTEs
```

71.5 Other resources

Wonderful documents on CMOS RAM, Far call interface list, Model Specific Registers, Assembler Opcodes, I2C Bus devices and System-management mode are part of RBIL. Because of space constraint I avoid listing them here. Anyhow they are available on CD.