

“Beauty can trick you.”

File format Collections

File formats are usually represented in record/structure format. Almost all documents use
Assembly language’s record format or C’s structure format or sometimes Pascal’s record format.
In file formats, mostly we would come across the jargons: BYTE, WORD & DWORD. BYTE
can be viewed as signed or unsigned char; WORD can be viewed as signed or unsigned int;
DWORD can be viewed as signed or unsigned long.

72.1 File Formats Encyclopedia
 The file formats encyclopedia found on CD has lots of file formats. For a quick and
neat description, I strongly suggest you to have a look on CD .
 In this chapter, I give you few file formats that I think will be useful. Most of them are
from File Formats Encyclopedia and official documentations. For a full description, have a look
on CD .

72.2 ARJ
72.2.1 Glimpse
 Following documentation gives you overall picture about ARJ file format.

The ARJ program by Robert K. Jung is a "newcomer" which compares well to PKZip
and LhArc in both compression and speed. An ARJ archive contains two types of header
blocks, one archive main header at the head of the archive and local file headers before each
archived file.

OFFSET Count TYPE Description
0000h 1 word ID=0EA60h
0002h 1 word Basic header size (0 if end of archive)
0004h 1 byte Size of header including extra data
0005h 1 byte Archiver version number
0006h 1 byte Minimum version needed to extract
0007h 1 byte Host OS (see table 0002)
0008h 1 byte Internal flags, bitmapped :

0 - no password / password
1 - reserved
2 - file continues on next disk
3 - file start position field is available
4 - path translation ("\" to "/")

72

 A to Z of C

773

OFFSET Count TYPE Description
0009h 1 byte Compression method :

0 - stored
1 - compressed most
2 - compressed
3 - compressed faster
4 - compressed fastest

000Ah 1 byte File type :
0 - binary
1 - 7-bit text
2 - comment header
3 - directory
4 - volume label

000Bh 1 byte reserved
000Ch 1 dword Date/Time of original file in MS-DOS format
0010h 1 dword Compressed size of file
0014h 1 dword Original size of file
0018h 1 dword Original file's CRC-32
001Ah 1 word Filespec position in filename
001Ch 1 word File attributes
001Eh 1 word Host data (currently not used)

1 dword Extended file starting position when used
(see above)

? char ASCIIZ file name

?

? char Comment
????h 1 dword Basic header CRC-32
????h 1 word Size of first extended header (0 if none) = "SIZ"
????h+"SIZ"+2 1 dword Extended header CRC-32
????h+"SIZ"+6 ? byte Compressed file

(Table 0002)

ARJ HOST-OS types
 0 - MS-DOS
 1 - PRIMOS
 2 - UNIX
 3 - AMIGA
 4 - MAC-OS (System xx)
 5 - OS/2
 6 - APPLE GS
 7 - ATARI ST
 8 - NeXT
 9 - VAX VMS

A to Z of C

774

72.2.2 Official documentation
 ARJ archives contains two types of header blocks:

 Archive main header - This is located at the head of the archive
 Local file header - This is located before each archived file

 Structure of main header (low order byte first):
Bytes Description

2 header id (main and local file) = 0x60 0xEA
2 basic header size (from 'first_hdr_size' thru 'comment' below)

= first_hdr_size + strlen(filename) + 1 + strlen(comment) + 1
= 0 if end of archive
maximum header size is 2600

1 first_hdr_size (size up to and including 'extra data')
1 archiver version number
1 minimum archiver version to extract
1 host OS (0 = MSDOS, 1 = PRIMOS, 2 = UNIX, 3 = AMIGA, 4 = MAC-OS)

 (5 = OS/2, 6 = APPLE GS, 7 = ATARI ST, 8 = NEXT)
 (9 = VAX VMS)

1 arj flags
(0x01 = NOT USED)(0x02 = OLD_SECURED_FLAG)
(0x04 = VOLUME_FLAG) indicates presence of succeeding Volume
(0x08 = NOT USED)(0x10 = PATHSYM_FLAG) indicates archive name translated
("\" changed to "/")
(0x20 = BACKUP_FLAG) indicates backup type archive
(0x40 = SECURED_FLAG)

1 security version (2 = current)
1 file type (must equal 2)
1 reserved
4 date time when original archive was created
4 date time when archive was last modified
4 archive size (currently used only for secured archives)
4 security envelope file position
2 filespec position in filename
2 length in bytes of security envelope data
2 (currently not used)
? (currently none)
? filename of archive when created (null-terminated string)
? archive comment (null-terminated string)
4 basic header CRC
2 1st extended header size (0 if none)
? 1st extended header (currently not used)
4 1st extended header's CRC (not present when 0 extended header size)

 A to Z of C

775

 Structure of local file header (low order byte first):
Bytes Description

2 header id (main and local file) = 0x60 0xEA
2 basic header size (from 'first_hdr_size' thru 'comment' below)

= first_hdr_size + strlen(filename) + 1 + strlen(comment) + 1
= 0 if end of archive
maximum header size is 2600

1 first_hdr_size (size up to and including 'extra data')
1 archiver version number
1 minimum archiver version to extract
1 host OS (0 = MSDOS, 1 = PRIMOS, 2 = UNIX, 3 = AMIGA, 4 = MAC-OS)

(5 = OS/2, 6 = APPLE GS, 7 = ATARI ST, 8 = NEXT) (9 = VAX VMS)
1 arj flags (0x01 = GARBLED_FLAG) indicates passworded file (0x02 = NOT

USED)
(0x04 = VOLUME_FLAG) indicates continued file to next volume (file is split)
(0x08 = EXTFILE_FLAG) indicates file starting position field (for split files)
(0x10 = PATHSYM_FLAG) indicates filename translated ("\" changed to "/")
(0x20 = BACKUP_FLAG) indicates file marked as backup

1 method (0 = stored, 1 = compressed most ... 4 compressed fastest)
1 file type (0 = binary, 1 = 7-bit text)(3 = directory, 4 = volume label)
1 reserved
4 date time modified
4 compressed size
4 original size (this will be different for text mode compression)
4 original file's CRC
2 filespec position in filename
2 file access mode
2 host data (currently not used)
? extra data
4 bytes for extended file starting position when used (these bytes are present

when EXTFILE_FLAG is set).
0 bytes otherwise.

? filename (null-terminated string)
? comment (null-terminated string)
4 basic header CRC
2 1st extended header size (0 if none)
? 1st extended header (currently not used)
4 1st extended header's CRC (not present when 0 extended header size)
 ...
? compressed file

A to Z of C

776

 Time stamp format:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
<---- year-1980 ---> <- month -> <--- day ---->

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
<--- hour ---> <---- minute ---> <- second/2 ->

72.3 BMP
Windows bitmap files are stored in a device-independent bitmap (DIB) format that

allows Windows to display the bitmap on any type of display device. The term "device
independent" means that the bitmap specifies pixel color in a form independent of the method
used by a display to represent color. The default filename extension of a Windows DIB file is
.BMP.

Bitmap-File Structures

Each bitmap file contains a bitmap-file header, a bitmap-information header,a color table, and
an array of bytes that defines the bitmap bits. The file has the following form:

BITMAPFILEHEADER bmfh;
BITMAPINFOHEADER bmih;
RGBQUAD aColors[];
BYTE aBitmapBits[];

The bitmap-file header contains information about the type, size, and layout of a device-
independent bitmap file. The header is defined as a
BITMAPFILEHEADER structure.

The bitmap-information header, defined as a BITMAPINFOHEADER structure, specifies the
dimensions, compression type, and color format for the bitmap.

The color table, defined as an array of RGBQUAD structures, contains as many elements as
there are colors in the bitmap. The color table is not present for bitmaps with 24 color bits
because each pixel is represented by 24-bitred-green-blue (RGB) values in the actual bitmap
data area. The colors in the table should appear in order of importance. This helps a display
driver render a bitmap on a device that cannot display as many colors as there are in the
bitmap. If the DIB is in Windows version 3.0 or later format, the driver can use the
biClrImportant member of the BITMAPINFOHEADER structure to determine which colors are
important.

The BITMAPINFO structure can be used to represent a combined bitmap-information header
and color table. The bitmap bits, immediately following the color table, consist of an array of
BYTE values representing consecutive rows, or "scan lines," of the bitmap. Each scan line
consists of consecutive bytes representing the pixels in the scan line, in left-to-right order. The
number of bytes representing a scan line depends on the color format and the width, in pixels,

 A to Z of C

777

of the bitmap. If necessary, a scan line must be zero-padded to end on a 32-bit boundary.
However, segment boundaries can appear anywhere in the bitmap. The scan lines in the
bitmap are stored from bottom up. This means that the first byte in the array represents the
pixels in the lower-left corner of the bitmap and the last byte represents the pixels in the
upper-right corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits
that define each pixel and the maximum number of colors in the bitmap. These members can
have any of the following values:

Value Meaning

1 Bitmap is monochrome and the color table contains two entries. Each bit in the
bitmap array represents a pixel. If the bit is clear, the pixel is displayed with
the color of the first entry in the color table. If the bit is set, the pixel has the
color of the second entry in the table.

4 Bitmap has a maximum of 16 colors. Each pixel in the bitmap is represented by
a 4-bit index into the color table. For example, if the first byte in the bitmap is
0x1F, the byte represents two pixels. The first pixel contains the color in the
second table entry, and the second pixel contains the color in the sixteenth table
entry.

8 Bitmap has a maximum of 256 colors. Each pixel in the bitmap is
represented by a 1-byte index into the color table. For example,
if the first byte in the bitmap is 0x1F, the first pixel has the
color of the thirty-second table entry.

24 Bitmap has a maximum of 2^24 colors. The bmiColors (or bmciColors) member
is NULL, and each 3-byte sequence in the bitmap array represents the relative
intensities of red, green, and blue, respectively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color
indexes in the color table actually used by the bitmap. If the biClrUsed member is set to zero,
the bitmap uses the maximum number of colors corresponding to the value of the biBitCount
member. An alternative form of bitmap file uses the BITMAPCOREINFO,
BITMAPCOREHEADER, and RGBTRIPLE structures.

Bitmap Compression

Windows versions 3.0 and later support run-length encoded (RLE) formats for compressing
bitmaps that use 4 bits per pixel and 8 bits per pixel.
Compression reduces the disk and memory storage required for a bitmap.

Compression of 8-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is set to BI_RLE8, the
DIB is compressed using a run-length encoded format for a 256-color bitmap. This format
uses two modes: encoded mode and absolute mode. Both modes can occur anywhere
throughout a single bitmap.

A to Z of C

778

Encoded Mode

A unit of information in encoded mode consists of two bytes. The first byte specifies the
number of consecutive pixels to be drawn using the color index contained in the second byte.
The first byte of the pair can be set to zero to indicate an escape that denotes the end of a
line, the end of the bitmap, or a delta. The interpretation of the escape depends on the value
of the second byte of the pair, which must be in the range 0x00 through 0x02.
Following are the meanings of the escape values that can be used in the second byte:

Second byte Meaning
0 End of line.
1 End of bitmap.
2 Delta. The two bytes following the escape contain

unsigned values indicating the horizontal and
vertical offsets of the next pixel from the current
position.

Absolute Mode

Absolute mode is signaled by the first byte in the pair being set to zero and the second byte to
a value between 0x03 and 0xFF. The second byte represents the number of bytes that follow,
each of which contains the color index of a single pixel. Each run must be aligned on a word
boundary.
Following is an example of an 8-bit RLE bitmap (the two-digit hexadecimal values in the
second column represent a color index for a single pixel):

Compressed data Expanded data
03 04 04 04 04
05 06 06 06 06 06 06
00 03 45 56 67 00 45 56 67
02 78 78 78
00 02 05 01 Move 5 right and 1 down
02 78 78 78
00 00 End of line
09 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E
00 01 End of RLE bitmap

Compression of 4-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is set to BI_RLE4, the
DIB is compressed using a run-length encoded format for a 16-color bitmap. This format uses
two modes: encoded mode and absolute mode.

Encoded Mode

A unit of information in encoded mode consists of two bytes. The first byte of the pair contains
the number of pixels to be drawn using the color indexes in the second byte.

 A to Z of C

779

The second byte contains two color indexes, one in its high-order nibble (that is, its low-order
4 bits) and one in its low-order nibble.

The first pixel is drawn using the color specified by the high-order nibble, the second is drawn
using the color in the low-order nibble, the third is drawn with the color in the high-order
nibble, and so on, until all the pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that denotes the end of a
line, the end of the bitmap, or a delta. The interpretation of the escape depends on the value
of the second byte of the pair. In encoded mode, the second byte has a value in the range
0x00 through 0x02. The meaning of these values is the same as for a DIB with 8 bits per
pixel.

Absolute Mode

In absolute mode, the first byte contains zero, the second byte contains the number of color
indexes that follow, and subsequent bytes contain color indexes in their high- and low-order
nibbles, one color index for each pixel. Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal values in the second
column represent a color index for a single pixel):

Compressed data Expanded data
03 04 0 4 0
05 06 0 6 0 6 0
00 06 45 56 67 00 4 5 5 6 6 7
04 78 7 8 7 8
00 02 05 01 Move 5 right and 1 down
04 78 7 8 7 8
00 00 End of line
09 1E 1 E 1 E 1 E 1 E 1
00 01 End of RLE bitmap

Bitmap Example

The following example is a text dump of a 16-color bitmap (4 bits per pixel):

Win3DIBFile
 BitmapFileHeader
 Type 19778
 Size 3118
 Reserved1 0
 Reserved2 0
 OffsetBits 118
 BitmapInfoHeader
 Size 40
 Width 80
 Height 75

A to Z of C

780

 Planes 1
 BitCount 4
 Compression 0
 SizeImage 3000

 XPelsPerMeter 0
 YPelsPerMeter 0
 ColorsUsed 16
 ColorsImportant 16
 Win3ColorTable
 Blue Green Red Unused
[00000000] 84 252 84 0
[00000001] 252 252 84 0
[00000002] 84 84 252 0
[00000003] 252 84 252 0
[00000004] 84 252 252 0
[00000005] 252 252 252 0
[00000006] 0 0 0 0
[00000007] 168 0 0 0
[00000008] 0 168 0 0
[00000009] 168 168 0 0
[0000000A] 0 0 168 0
[0000000B] 168 0 168 0
[0000000C] 0 168 168 0
[0000000D] 168 168 168 0
[0000000E] 84 84 84 0
[0000000F] 252 84 84 0
 Image
 .
 . Bitmap data
 .

72.4 CHR
 Following is the official documentation of CHR file format.
The structure of Borland .CHR (stroke) files is as follows:

 offset 0h is a Borland header:

 HeaderSize equ 080h
 DataSize equ (size of font file)
 descr equ "Triplex font"
 fname equ "TRIP"
 MajorVersion equ 1
 MinorVersion equ 0

db 'PK',8,8
db 'BGI ',descr,' V'

 A to Z of C

781

db MajorVersion+'0'
db (MinorVersion / 10)+'0',(MinorVersion mod 10)+'0'
db ' - 19 October 1987',0DH,0AH
db 'Copyright (c) 1987 Borland International', 0dh,0ah
db 0,1ah ; null & ctrl-Z = end

dw HeaderSize ; size of header
db fname ; font name
dw DataSize ; font file size
db MajorVersion,MinorVersion ; version #'s
db 1,0 ; minimal version #'s

db (HeaderSize - $) DUP (0) ; pad out to header size

At offset 80h starts data for the file:

80h '+' flags stroke file type
81h-82h number chars in font file (n)
83h undefined
84h ASCII value of first char in file
85h-86h offset to stroke definitions (8+3n)
87h scan flag (normally 0)
88h distance from origin to top of capital
89h distance from origin to baseline
90h distance from origin to bottom descender
91h-95h undefined
96h offsets to individual character definitions
96h+2n width table (one word per character)
96h+3n start of character definitions

The individual character definitions consist of a variable number of words
describing the operations required to render a character. Each word
consists of an (x,y) coordinate pair and a two-bit opcode, encoded as shown
here:

Byte 1 7 6 5 4 3 2 1 0 bit #
 op1 <seven bit signed X coord>

Byte 2 7 6 5 4 3 2 1 0 bit #
 op2 <seven bit signed Y coord>

72.5 COM
The COM files are raw binary executables and are a leftover from the old CP/M

machines with 64K RAM. A COM program can only have a size of less than one segment
(64K), including code and static data since no fixups for segment relocation or anything else
is included. One method to check for a COM file is to check if the first byte in the file could be

A to Z of C

782

a valid jump or call opcode, but this is a very weak test since a COM file is not required to
start with a jump or a call. In principle, a COM file is just loaded at offset 100h in the segment
and then executed.

OFFSET Count TYPE Description
0000h 1 byte ID=0E9h

ID=0Ebh
Those are not safe ways to determine wether a file is a COM file or not, but most COM files
start with a jump.

72.6 CUR
A cursor-resource file contains image data for cursors used by Windows applications.

The file consists of a cursor directory identifying the number and types of cursor images in the
file, plus one or more cursor images. The default filename extension for a cursor-resource file
is .CUR.

Cursor Directory

Each cursor-resource file starts with a cursor directory. The cursor directory, defined as a
CURSORDIR structure, specifies the number of cursors in the file and the dimensions and color
format of each cursor image. The CURSORDIR structure has the following form:

typedef struct _CURSORDIR {
 WORD cdReserved;
 WORD cdType;
 WORD cdCount;
 CURSORDIRENTRY cdEntries[];
} CURSORDIR;

Following are the members in the CURSORDIR structure:

cdReserved Reserved; must be zero.
cdType Specifies the resource type. This member must be set to 2.
cdCount Specifies the number of cursors in the file.
cdEntries Specifies an array of CURSORDIRENTRY structures containing

information about individual cursors. The cdCount member specifies
the number of structures in the array.

A CURSORDIRENTRY structure specifies the dimensions and color format of a cursor image.
The structure has the following form:

 A to Z of C

783

typedef struct _CURSORDIRENTRY {
 BYTE bWidth;
 BYTE bHeight;
 BYTE bColorCount;
 BYTE bReserved;
 WORD wXHotspot;
 WORD wYHotspot;
 DWORD lBytesInRes;
 DWORD dwImageOffset;
} CURSORDIRENTRY;

Following are the members in the CURSORDIRENTRY structure:

bWidth Specifies the width of the cursor, in pixels.
bHeight Specifies the height of the cursor, in pixels.
bColorCount Reserved; must be zero.
bReserved Reserved; must be zero.
wXHotspot Specifies the x-coordinate, in pixels, of the hot spot.
wYHotspot Specifies the y-coordinate, in pixels, of the hot spot.
lBytesInRes Specifies the size of the resource, in bytes.
dwImageOffset

Specifies the offset, in bytes, from the start of the file to the
cursor image.

Cursor Image

Each cursor-resource file contains one cursor image for each image identified in the cursor
directory. A cursor image consists of a cursor-image header, a color table, an XOR mask, and
an AND mask. The cursor image has the following form:

BITMAPINFOHEADER crHeader;
RGBQUAD crColors[];
BYTE crXOR[];
BYTE crAND[];

The cursor hot spot is a single pixel in the cursor bitmap that Windows uses to track the
cursor. The crXHotspot and crYHotspot members specify the x- and y-coordinates of the
cursor hot spot. These coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, specifies the
dimensions and color format of the cursor bitmap. Only the biSize through biBitCount
members and the biSizeImage member are used. The biHeight member specifies the
combined height of the XOR and AND masks for the cursor. This value is twice the height of
the XOR mask. The biPlanes and biBitCount members must be 1. All other members (such as
biCompression and biClrImportant) must be set to zero.

A to Z of C

784

The color table, defined as an array of RGBQUAD structures, specifies the colors used in the
XOR mask. For a cursor image, the table contains exactly two structures, since the biBitCount
member in the cursor-image header is always 1.

The XOR mask, immediately following the color table, is an array of BYTE values representing
consecutive rows of a bitmap. The bitmap defines the basic shape and color of the cursor
image. As with the bitmap bits in a bitmap file, the bitmap data in a cursor-resource file is
organized in scan lines, with each byte representing one or more pixels, as defined by the
color format. For more information about these bitmap bits, see Section "Bitmap-File
Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE values representing
a monochrome bitmap with the same width and height as the XOR mask. The array is
organized in scan lines, with each byte representing 8 pixels.

When Windows draws a cursor, it uses the AND and XOR masks to combine the cursor image
with the pixels already on the display surface. Windows first applies the AND mask by using a
bitwise AND operation; this preserves or removes existing pixel color. Window then applies
the XOR mask by using a bitwise XOR operation. This sets the final color for each pixel.

The following illustration shows the XOR and the AND masks that create a cursor (measuring 8
pixels by 8 pixels) in the form of an arrow:

Following are the bit-mask values necessary to produce black, white, inverted, and
transparent results:

Pixel result AND mask XOR mask
Black 0 0
White 0 1
Transparent 1 0
Inverted 1 1

Windows Cursor Selection

If a cursor-resource file contains more than one cursor image, Windows determines the best
match for a particular display by examining the width and height of the cursor images.

72.7 DBF (General Format of .dbf files in Xbase languages)

Applies for / supported by:
FS = FlagShip D3 = dBaseIII+
Fb = FoxBase D4 = dBaseIV
Fp = FoxPro D5 = dBaseV
CL = Clipper

 A to Z of C

785

1. DBF Structure
Byte Description
0..n .dbf header (see 2 for size, byte 8)
n+1 1st record of fixed length (see 2&3)

2nd record (see 2 for size, byte 10)
...
last record

 if dbf is
 not empty

last optional: 0x1a (eof byte)

2. DBF Header (variable size, depending on field count)

Byte Size Contents Description Applies for
(supported by)

0x03 plain .dbf FS, D3, D4, D5, Fb, Fp, CL
0x04 plain .dbf D4, D5 (FS)
0x05 plain .dbf D5, Fp (FS)
0x43 with .dbv memo var size FS
0xB3 with .dbv and .dbt memo FS
0x83 with .dbt memo FS, D3, D4, D5, Fb, Fp, CL
0x8B with .dbt memo in D4

format
D4, D5

0x8E with SQL table D4, D5

00 1

0xF5 with .fmp memo Fp
01 3 YYMMDD Last update digits all
04 4 ulong Number of records in file all
08 2 ushort Header size in bytes all
10 2 ushort Record size in bytes all
12 2 0,0 Reserved all

0x01 Begin transaction D4, D5
0x00 End Transaction D4, D5

14 1

0x00 ignored FS, D3, Fb, Fp, CL
0x01 Encryptpted D4, D5 15 1
0x00 normal visible all

16 12 0 (1) multi-user environment use D4,D5
0x01 production index exists Fp, D4, D5 28 1
0x00 index upon demand all
n language driver ID D4, D5
0x01 codepage 437 DOS USA Fp
0x02 codepage 850 DOS Multi

ling
Fp

0x03 codepage 1251 Windows
ANSI

Fp

0xC8 codepage 1250 Windows EE Fp

29 1

0x00 ignored FS, D3, Fb, Fp, CL
30 2 0,0 reserved all
32 n*32 Field Descriptor, see (2a) all
+1 1 0x0D Header Record Terminator all

A to Z of C

786

2a. Field descriptor array in dbf header (fix 32 bytes for each field)
Byte Size Contents Description Applies for

(supported by)
0 11 ASCI field name, 0x00 termin. all
11 1 ASCI field type (see 2b) all

n,n,n,n fld address in memory D3
n,n,0,0 offset from record begin Fp

12 4

0,0,0,0 ignored FS, D4, D5, Fb, CL
16 1 byte Field length, bin (see 2b) all \ FS,CL: for C field type,
17 1 byte decimal count, bin all / both used for fld lng
18 2 0,0 reserved all

byte Work area ID D4, D5 20 1
0x00 unused FS, D3, Fb, Fp, CL
n,n multi-user dBase D3, D4, D5 21 2
0,0 ignored FS, Fb, Fp, CL
0x01 Set Fields D3, D4, D5 23 1
0x00 ignored FS, Fb, Fp, CL

24 7 0..0 reserved all
0x01 Field is in .mdx index D4, D5 31 1
0x00 ignored FS, D3, Fb, Fp, CL

2b. Field type and size in dbf header, field descriptor (1 byte)
 Size Type Description/Storage Applies for

(supported by)
ASCII (OEM code page chars)
rest= space, not \0 term.
n = 1..64kb (using deci count) FS
n = 1..32kb (using deci count) Fp, CL

all C 1..n Char

n = 1..254 all
8 Ascii digits (0..9) in the all D 8 Date
YYYYMMDD format
Ascii digits (-.0123456789)
variable pos. of float.point

F 1..n Numeric

n = 1..20

FS, D4, D5, Fp

Ascii digits (-.0123456789)
fix posit/no float.point

all

n = 1..20 FS, Fp, CL

N 1..n Numeric

n = 1..18 D3, D4, D5, Fb
Ascii chars (YyNnTtFf space) FS, D3, Fb, Fp, CL L 1 Logical
Ascii chars (YyNnTtFf ?) D4, D5 (FS)
10 digits repres. the start
block posit. in .dbt file, or

M 10 Memo

10spaces if no entry in memo

all

 A to Z of C

787

 Size Type Description/Storage Applies for
(supported by)

Variable, bin/asc data in .dbv
4bytes bin= start pos in memo
4bytes bin= block size
1byte = subtype
1byte = reserved (0x1a)

V 10 Variable

10spaces if no entry in .dbv

FS

binary data in .ftp P 10 Picture
structure like M

Fp

binary data in .dbt B 10 Binary
structure like M

D5

OLE objects G 10 General
structure like M

D5, Fp

2 2 short int binary int max +/- 32767 FS
4 4 long int binary int max +/- 2147483647 FS
8 8 double binary signed double IEEE FS

3. Each Dbf record (fix length)
Byte Size Description Applies for

(supported by)
0 1 deleted flag "*" or not deleted " " all
1..n 1.. x-times contents of fields, fixed

length, unterminated.
For n, see (2) byte 10..11

all

Courtesy:multisoft Datentechnik GmbH

A to Z of C

788

72.8 EXE
72.8.1 Old EXE format (EXE MZ)

 .EXE - DOS EXE File Structure
Offset Size Description

00
02
04
06
08

0A
0C
0E
10
12
14
16
18
1A

word
word
word
word
word

word
word
word
word
word
word
word
word
word

"MZ" or “ZM”- Link file .EXE signature (Mark Zbikowski?)
length of image mod 512
size of file in 512 byte pages
number of relocation items following header
size of header in 16 byte paragraphs, used to locate
the beginning of the load module
min # of paragraphs needed to run program
max # of paragraphs the program would like
offset in load module of stack segment (in paras)
initial SP value to be loaded
negative checksum of pgm used while by EXEC loads pgm
program entry point, (initial IP value)
offset in load module of the code segment (in paras)
offset in .EXE file of first relocation item overlay number (0 for
root program)

• relocation table and the program load module follow the header
• relocation entries are 32 bit values representing the offset into the load module

needing patched
• once the relocatable item is found, the CS register is added to the value found at the

calculated offset

 Registers at load time of the EXE file are as follows:

 AX:
 BX:CX
 DX
 SS:SP

 DS
 ES
 CS:IP

contains number of characters in command tail, or 0
32 bit value indicating the load module memory size
zero
set to stack segment if defined else, SS = CS and SP=FFFFh or top of
memory.
set to segment address of EXE header
set to segment address of EXE header
far address of program entry point, (label on "END" statement of program)

72.8.2 New EXE format (EXE NE)

The Windows (new-style) executable-file header contains information that the loader
requires for segmented executable files. This information includes the linker version number,
data specified by the linker, data specified by the resource compiler, tables of segment data,
tables of resource data, and so on. The following illustration shows the Windows executable-
file header: The following sections describe the entries in the Windows executable-file header.

 A to Z of C

789

Information Block

The information block in the Windows header contains the linker version number, the lengths
of various tables that further describe the executable file, the offsets from the beginning of the
header to the beginning of these tables, the heap and stack sizes, and so on. The following list
summarizes the contents of the header information block (the locations are relative to the
beginning of the block):

Location Description
00h Specifies the signature word. The low byte contains "N" (4Eh) and the high byte

contains "E" (45h).
02h Specifies the linker version number.
03h Specifies the linker revision number.
04h Specifies the offset to the entry table (relative to the beginning of the header).

06h Specifies the length of the entry table, in bytes.
08h Reserved.
0Ch Specifies flags that describe the contents of the executable file. This value can be

one or more of the following bits:

Bit Meaning
0 The linker sets this bit if the executable-file format is SINGLEDATA. An executable

file with this format contains one data segment. This bit is set if the file is a
dynamic-link library (DLL).

1

The linker sets this bit if the executable-file format is MULTIPLEDATA. An executable
file with this format contains multiple data segments. This bit is set if the file is a
Windows application.
If neither bit 0 nor bit 1 is set, the executable-file format is NOAUTODATA. An
executable file with this format does not contain an automatic data segment.

2 Reserved.
3 Reserved.
8 Reserved.
9 Reserved.
11 If this bit is set, the first segment in the executable file contains code that loads the

application.
13 If this bit is set, the linker detects errors at link time but still creates an executable

file.
14 Reserved.
15 If this bit is set, the executable file is a library module.

If bit 15 is set, the CS:IP registers point to an initialization procedure called with the
value in the AX register equal to the module handle. The initialization procedure must execute
a far return to the caller. If the procedure is successful, the value in AX is nonzero. Otherwise,
the value in AX is zero. The value in the DS register is set to the library's data segment if
SINGLEDATA is set. Otherwise, DS is set to the data segment of the application that loads the
library.

A to Z of C

790

0Eh Specifies the automatic data segment number. (0Eh is zero if the SINGLEDATA and

MULTIPLEDATA bits are cleared.)

10h Specifies the initial size, in bytes, of the local heap. This value is zero if there is no local
allocation.

12h Specifies the initial size, in bytes, of the stack. This value is zero if the SS register value
does not equal the DS register value.

14h Specifies the segment:offset value of CS:IP.
18h Specifies the segment:offset value of SS:SP.

The value specified in SS is an index to the module's segment table. The first entry
in the segment table corresponds to segment number 1. If SS addresses the automatic data
segment and SP is zero, SP is set to the address obtained by adding the size of the automatic
data segment to the size of the stack.

1Ch Specifies the number of entries in the segment table.
1Eh Specifies the number of entries in the module-reference table.
20h Specifies the number of bytes in the nonresident-name table.
22h Specifies a relative offset from the beginning of the Windows header to the beginning of

the segment table.
24h Specifies a relative offset from the beginning of the Windows header to the beginning of

the resource table.
26h Specifies a relative offset from the beginning of the Windows header to the beginning of

the resident-name table.
28h Specifies a relative offset from the beginning of the Windows header to thebeginning of

the module-reference table.
2Ah Specifies a relative offset from the beginning of the Windows header to the beginning of

the imported-name table.
2Ch Specifies a relative offset from the beginning of the file to the beginning of the

nonresident-name table.
30h Specifies the number of movable entry points.
32h

Specifies a shift count that is used to align the logical sector. This count is log2 of the
segment sector size. It is typically 4, although the default count is 9. (This value
corresponds to the /alignment [/a] linker switch. When the linker command line
contains /a:16, the shift count is 4. When the linker command line contains /a:512, the
shift count is 9.)

34h Specifies the number of resource segments.
36h Specifies the target operating system, depending on which bits are set:

Bit Meaning
0 Operating system format is unknown.
1 Reserved.
2 Operating system is Microsoft Windows.
3 Reserved.
4 Reserved.

 A to Z of C

791

37h Specifies additional information about the executable file. It can be one or more of the
following values:

Bit Meaning
1 If this bit is set, the executable file contains a Windows 2.x application that runs in

version 3.x protected mode.
2 If this bit is set, the executable file contains a Windows 2.x application that supports

proportional fonts.
3 If this bit is set, the executable file contains a fast-load area.

38h

Specifies the offset, in sectors, to the beginning of the fast-load area. (Only Windows
uses this value.)

3Ah Specifies the length, in sectors, of the fast-load area. (Only Windows uses this value.)

3Ch Reserved.
3Eh Specifies the expected version number for Windows. (Only Windows uses this value.)

Segment Table

The segment table contains information that describes each segment in an executable file.
This information includes the segment length, segment type, and segment-relocation data.
The following list summarizes the values found in the segment table (the locations are relative
to the beginning of each entry):

Location Description
00h Specifies the offset, in sectors, to the segment data (relative to the beginning of

the file). A value of zero means no data exists.
02h Specifies the length, in bytes, of the segment, in the file. A value of zero indicates

that the segment length is 64K, unless the selector offset is also zero.
04h Specifies flags that describe the contents of the executable file. This value can be

one or more of the following:

Bit Meaning
0 If this bit is set, the segment is a data segment. Otherwise, the segment is a code

segment.
1 If this bit is set, the loader has allocated memory for the segment.
2 If this bit is set, the segment is loaded.
3 Reserved.
4 If this bit is set, the segment type is MOVABLE. Otherwise, the segment type is FIXED.

5 If this bit is set, the segment type is PURE or SHAREABLE. Otherwise, the segment type
is IMPURE or NONSHAREABLE.

6 If this bit is set, the segment type is PRELOAD. Otherwise, the segment type is
LOADONCALL.

7 If this bit is set and the segment is a code segment, the segment type is
EXECUTEONLY.
If this bit is set and the segment is a data segment, the segment type is READONLY.

A to Z of C

792

Bit Meaning
8 If this bit is set, the segment contains relocation data.
9 Reserved.
10 Reserved.
11 Reserved.
12 If this bit is set, the segment is discardable.
13 Reserved.
14 Reserved.
15 Reserved.

06h Specifies the minimum allocation size of the segment, in bytes. A value of zero
indicates that the minimum allocation size is 64K.

Resource Table

The resource table describes and identifies the location of each resource in the executable file.
The table has the following form:

WORD rscAlignShift;
TYPEINFO rscTypes[];
WORD rscEndTypes;
BYTE rscResourceNames[];
BYTE rscEndNames;

Following are the members in the resource table:

rscAlignShift

Specifies the alignment shift count for resource data. When the shift
count is used as an exponent of 2, the resulting value specifies the
factor, in bytes, for computing the location of a resource in the
executable file.

rscTypes Specifies an array of TYPEINFO structures containing information about
resource types. There must be one TYPEINFO structure for each type of
resource in the executable file.

rscEndTypes Specifies the end of the resource type definitions. This member must be
zero.

RscResourceNames Specifies the names (if any) associated with the resources in this table.
Each name is stored as consecutive bytes; the first byte specifies the
number of characters in the name.

rscEndNames Specifies the end of the resource names and the end of the resource
table.
This member must be zero.

Type Information

The TYPEINFO structure has the following form:

 A to Z of C

793

typedef struct _TYPEINFO {
 WORD rtTypeID;
 WORD rtResourceCount;
 DWORD rtReserved;
 NAMEINFO rtNameInfo[];
} TYPEINFO;

Following are the members in the TYPEINFO structure:

rtTypeID

Specifies the type identifier of the resource. This integer value is either a resource-
type value or an offset to a resource-type name. If the high bit in this member is
set (0x8000), the value is one of the following resource-type values:

Value Resource type
RT_ACCELERATOR Accelerator table
RT_BITMAP Bitmap
RT_CURSOR Cursor
RT_DIALOG Dialog box
RT_FONT Font component
RT_FONTDIR Font directory
RT_GROUP_CURSOR Cursor directory
RT_GROUP_ICON Icon directory
RT_ICON Icon
RT_MENU Menu
RT_RCDATA Resource data
RT_STRING String table

If the high bit of the value in this member is not set, the value represents an offset, in bytes
relative to the beginning of the resource table, to a name in the rscResourceNames member.

rtResourceCount Specifies the number of resources of this type in the executable file.
rtReserved Reserved.
rtNameInfo Specifies an array of NAMEINFO structures containing information about

individual resources.
The rtResourceCount member specifies the number of structures in the array.

Name Information

The NAMEINFO structure has the following form:

A to Z of C

794

typedef struct _NAMEINFO {
 WORD rnOffset;
 WORD rnLength;
 WORD rnFlags;
 WORD rnID;
 WORD rnHandle;
 WORD rnUsage;
} NAMEINFO;

Following are the members in the NAMEINFO structure:

rnOffset Specifies an offset to the contents of the resource data (relative to
the beginning of the file). The offset is in terms of alignment units specified by the
rscAlignShift member at the beginning of the resource table.
rnLength Specifies the resource length, in bytes.
rnFlags Specifies whether the resource is fixed, preloaded, or shareable. This member

can be one or more of the following values:

Value Meaning
0x0010 Resource is movable (MOVEABLE). Otherwise, it is fixed.
0x0020 Resource can be shared (PURE).
0x0040 Resource is preloaded (PRELOAD). Otherwise, it is loaded on demand.

rnID Specifies or points to the resource identifier. If the identifier is an integer,
the high bit is set (8000h). Otherwise, it is an offset to a resource string, relative to the
beginning of the resource table.
rnHandle Reserved.
rnUsage Reserved.

Resident-Name Table

The resident-name table contains strings that identify exported functions in the executable
file. As the name implies, these strings are resident in system memory and are never
discarded. The resident-name strings are case-sensitive and are not null-terminated. The
following list summarizes the values found in the resident-name table (the locations are
relative to the beginning of each entry):

Location Description
00h Specifies the length of a string. If there are no more strings in the table, this

value is zero.
01h - xxh Specifies the resident-name text. This string is case-sensitive and is not null-

terminated.
xxh + 01h Specifies an ordinal number that identifies the string. This number is an index

into the entry table.

The first string in the resident-name table is the module name.

 A to Z of C

795

Module-Reference Table

The module-reference table contains offsets for module names stored in the imported-name
table. Each entry in this table is 2 bytes long.

Imported-Name Table

The imported-name table contains the names of modules that the executable file imports.
Each entry contains two parts: a single byte that specifies the length of the string and the
string itself. The strings in this table are not null-terminated.

Entry Table

The entry table contains bundles of entry points from the executable file (the linker generates
each bundle). The numbering system for these ordinal values is 1-based--that is, the ordinal
value corresponding to the first entry point is 1. The linker generates the densest possible
bundles under the restriction that it cannot reorder the entry points. This restriction is
necessary because other executable files may refer to entry points within a given bundle by
their ordinal values. The entry-table data is organized by bundle, each of which begins with a
2-byte header. The first byte of the header specifies the number of entries in the bundle (a
value of 00h designates the end of the table). The second byte specifies whether the
corresponding segment is movable or fixed. If the value in this byte is 0FFh, the segment is
movable. If the value in this byte is 0FEh, the entry does not refer to a segment but refers,
instead, to a constant defined within the module. If the value in this byte is neither 0FFh nor
0FEh, it is a segment index.

For movable segments, each entry consists of 6 bytes and has the following form:

Location Description
00h Specifies a byte value. This value can be a combination of the following bits:

Bit(s) Meaning
0 If this bit is set, the entry is exported.
1 If this bit is set, the segment uses a global (shared) data segment.
3-7 If the executable file contains code that performs ring transitions, these bits specify

the number of words that compose the stack. At the time of the ring transition, these
words must be copied from one ring to the other.

01h Specifies an int 3fh instruction.
03h Specifies the segment number.
04h Specifies the segment offset.

For fixed segments, each entry consists of 3 bytes and has the following form:

Location Description
00h Specifies a byte value. This value can be a combination of the following bits:

A to Z of C

796

Bit(s) Meaning
0 If this bit is set, the entry is exported.
1 If this bit is set, the entry uses a global (shared) data segment. (This may be set only

for SINGLEDATA library modules.)
3-7 If the executable file contains code that performs ring transitions, these bits specify

the number of words that compose the stack. At the time of the ring transition, these
words must be copied from one ring to the other.

01h Specifies an offset.

Nonresident-Name Table

The nonresident-name table contains strings that identify exported functions in the executable
file. As the name implies, these strings are not always resident in system memory and are
discardable. The nonresident-name strings are case-sensitive; they are not null-terminated.
The following list summarizes the values found in the nonresident-name table (the specified
locations are relative to the beginning of each entry):

Location Description
00h Specifies the length, in bytes, of a string. If this byte is 00h, there are no more

strings in the table.

01h - xxh Specifies the nonresident-name text. This string is case-sensitive and is not null-
terminated.

xx + 01h Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module description string
(which was specified in the module-definition file).

Code Segments and Relocation Data

Code and data segments follow the Windows header. Some of the code segments
may contain calls to functions in other segments and may, therefore, require relocation data
to resolve those references. This relocation data is stored in a relocation table that appears
immediately after the code or data in the segment. The first 2 bytes in this table specify the
number of relocation items the table contains. A relocation item is a collection of bytes
specifying the following information:

Address type (segment only, offset only, segment and offset)
Relocation type (internal reference, imported ordinal, imported name)
Segment number or ordinal identifier (for internal references)
Reference-table index or function ordinal number (for imported ordinals)
Reference-table index or name-table offset (for imported names)

 A to Z of C

797

Each relocation item contains 8 bytes of data, the first byte of which specifies one of the
following relocation-address types:

Value Meaning
0 Low byte at the specified offset
2 16-bit selector
3 32-bit pointer
5 16-bit offset
11 48-bit pointer
13 32-bit offset

The second byte specifies one of the following relocation types:

Value Meaning
0 Internal reference
1 Imported ordinal
2 Imported name
3 OSFIXUP

The third and fourth bytes specify the offset of the relocation item within the segment.
If the relocation type is imported ordinal, the fifth and sixth bytes specify an index to a
module's reference table and the seventh and eighth bytes specify a function ordinal value.
If the relocation type is imported name, the fifth and sixth bytes specify an index to a
module's reference table and the seventh and eighth bytes specify an offset to an imported-
name table. If the relocation type is internal reference and the segment is fixed, the fifth byte
specifies the segment number, the sixth byte is zero, and the seventh and eighth bytes specify
an offset to the segment. If the relocation type is internal reference and the segment is
movable, the fifth byte specifies 0FFh, the sixth byte is zero; and the seventh and eighth bytes
specify an ordinal value found in the segment's entry table.

72.9 GIF
The Graphics Interchange Format (tm) was created by Compuserve Inc. as a standard

for the storage and transmission of raster-based graphics information, i.e. images. A GIF
file may contain several images, which are to be displayed overlapping and without any
delay betwenn the images. The image data itself is compressed using a LZW scheme. Please
note that the LZW algorithm is patented by UniSys and that since Jan.1995 royalties to
Compuserve are due for every software that implements GIF images. The GIF file consists of
a global GIF header, one or more image blocks and optionally some GIF extensions.

A to Z of C

798

OFFSET Count TYPE Description
0000h 6 char ID='GIF87a', ID='GIF89a'

This ID may be viewed as a version number
0006h 1 word Image width
0008h 1 word Image height
000Ah

1

byte

bit mapped
0-2 - bits per pixel -1

3 - reserved
4-6 - bits of color resolution
 7 - Global color map follows image descriptor

000Bh 1 byte Color index of screen background
000Ch 1 byte reserved

The global color map immediately follows the screen descriptor and has the size

(2**BitsPerPixel), and has the RGB colors for each color index. 0 is none, 255 is full intensity.
The bytes are stored in the following format :

OFFSET Count TYPE Description
0000h 1 byte Red component
0001h 1 byte Green component
0002h 1 byte Blue component

After the first picture, there may be more pictures attached in the file whic overlay

the first picture or parts of the first picture. The Image Descriptor defines the actual
placement and extents of the following image within the space defined in the Screen
Descriptor. Each Image Descriptor is introduced by an image separator character. The role
of the Image Separator is simply to provide a synchronization character to introduce an
Image Descriptor, the image separator is defined as ",", 02Ch, Any characters encountered
between the end of a previous image and the image separator character are to be ignored.

The format of the Image descriptor looks like this :

OFFSET Count TYPE Description
0000h 1 char Image separator ID=','
0001h 1 word Left offset of image
0003h 1 word Upper offset of image
0005h 1 word Width of image
0007h 1 word Height of image
0009h

1

byte

Palette description - bitmapped
0-2 - Number of bits per pixel-1
3-5 - reserved (0)

6 - Interlaced / sequential image
 7 - local / global color map, ignore bits 0-2

To provide for some possibility of an extension of the GIF files, a special extension

block introducer can be added after the GIF data block. The block has the following
structure :

 A to Z of C

799

OFFSET Count TYPE Description
0000h 1 char ID='!'
0001h 1 byte Extension ID
0002h ? rec
 1 word Byte count
 ? byte Extra data
????h 1 byte Zero byte count - terminates extension block.

72.10 ICO
An icon-resource file contains image data for icons used by Windows applications. The file
consists of an icon directory identifying the number and types of icon images in the file, plus
one or more icon images. The default filename extension for an icon-resource file is .ICO.

Icon Directory
Each icon-resource file starts with an icon directory. The icon directory, defined as an ICONDIR
structure, specifies the number of icons in the resource and the dimensions and color format
of each icon image. The ICONDIR structure has the following form:

typedef struct ICONDIR {
 WORD idReserved;
 WORD idType;
 WORD idCount;
 ICONDIRENTRY idEntries[1];
} ICONHEADER;

Following are the members in the ICONDIR structure:

idReserved Reserved; must be zero.
idType Specifies the resource type. This member is set to 1.
idCount Specifies the number of entries in the directory.
idEntries

Specifies an array of ICONDIRENTRY structures containing
information about individual icons. The idCount member
specifies the number of structures in the array.

The ICONDIRENTRY structure specifies the dimensions and color format for an icon. The
structure has the following form:

struct IconDirectoryEntry {
 BYTE bWidth;
 BYTE bHeight;
 BYTE bColorCount;
 BYTE bReserved;
 WORD wPlanes;
 WORD wBitCount;
 DWORD dwBytesInRes;
 DWORD dwImageOffset;
};

A to Z of C

800

Following are the members in the ICONDIRENTRY structure:

bWidth Specifies the width of the icon, in pixels. Acceptable values
are 16, 32, and 64.

bHeight Specifies the height of the icon, in pixels. Acceptable values
are 16, 32, and 64.

bColorCount Specifies the number of colors in the icon. Acceptable values
are 2, 8, and 16.

bReserved Reserved; must be zero.
wPlanes Specifies the number of color planes in the icon bitmap.

wBitCount Specifies the number of bits in the icon bitmap.
dwBytesInRes Specifies the size of the resource, in bytes.
dwImageOffset

Specifies the offset, in bytes, from the beginning of the file
to the icon image.

Icon Image

Each icon-resource file contains one icon image for each image identified in the icon directory.
An icon image consists of an icon-image header, a color table, an XOR mask, and an AND
mask. The icon image has the following form:

BITMAPINFOHEADER icHeader;
RGBQUAD icColors[];
BYTE icXOR[];
BYTE icAND[];

The icon-image header, defined as a BITMAPINFOHEADER structure, specifies the dimensions
and color format of the icon bitmap. Only the biSize through biBitCount members and the
biSizeImage member are used. All other members (such as biCompression and
biClrImportant) must be set to zero. The color table, defined as an array of RGBQUAD
structures, specifies the colors used in the XOR mask. As with the color table in a bitmap file,
the biBitCount member in the icon-image header determines the number of elements in the
array. For more information about the color table, see Section "Bitmap-File Formats."

The XOR mask, immediately following the color table, is an array of BYTE values representing
consecutive rows of a bitmap. The bitmap defines the basic shape and color of the icon image.
As with the bitmap bits in a bitmap file, the bitmap data in an icon-resource file is organized in
scan lines, with each byte representing one or more pixels, as defined by the color format. For
more information about these bitmap bits, see Section "Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE values, representing
a monochrome bitmap with the same width and height as the XOR mask. The array is
organized in scan lines, with each byte representing 8 pixels.

When Windows draws an icon, it uses the AND and XOR masks to combine the icon image with
the pixels already on the display surface. Windows first applies the AND mask by using a

 A to Z of C

801

bitwise AND operation; this preserves or removes existing pixel color. Windows then applies
the XOR mask by using a bitwise XOR operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a monochrome icon
(measuring 8 pixels by 8 pixels) in the form of an uppercase K:

Windows Icon Selection

Windows detects the resolution of the current display and matches it against the width and
height specified for each version of the icon image. If Windows determines that there is an
exact match between an icon image and the current device, it uses the matching image.
Otherwise, it selects the closest match and stretches the image to the proper size.

If an icon-resource file contains more than one image for a particular resolution, Windows
uses the icon image that most closely matches the color capabilities of the current display. If
no image matches the device capabilities exactly, Windows selects the image that has the
greatest number of colors without exceeding the number of display colors. If all images
exceed the color capabilities of the current display, Windows uses the icon image with the
least number of colors.

72.11 JPEG
Format of a JPEG block (all data is in Motorola byte order) :

OFFSET Count TYPE Description
0000h 1

word

Block ID
0FFD8h - JPEG signature block(4 chars="JFIF")
0FFC0h - JPEG color information
0FFC1h - JPEG color information

0002h 1 word Block size in bytes, without ID word.

Format of JPEG color information (motorola byte order) :

OFFSET Count TYPE Description
0000h 1 byte 1=Grayscale image
0001h 1 word Height
0003h 1 word Width

Another try for JPEG identification could be this one :

OFFSET Count TYPE Description
0000h 1 dword ID=FFD9FFE0h

ID=FFD8FFE0h
Big endian JPEG file (Intel)
ID=E0FFD8FFh
Little endian JPEG file (Motorola)

A to Z of C

802

72.12 LZH
The LHArc/LHA archiver is a multi platform archiver made by Haruyasu Yoshizaki,

which has a relatively good compression. It uses more or less the same technology like the
ZIP programs by Phil Katz. There was a hack named "ICE", which had only the graphic
characters displayed on decompression changed.

OFFSET Count TYPE Description
0000h 1 byte Size of archived file header
0001h 1 byte Checksum of remaining bytes
0002h 3 char ID='-lh'

ID='-lz'
0005h 1 char Compression methods used (see table 0005)
0006h 1 char ID='-'
0007h 1 dword Compressed size
000Bh 1 dword Uncompressed size
000Fh 1 dword Original file date/time (see table 0009)
0013h 1 word File attribute
0015h 1 byte Filename / path length in bytes

="LEN"
0016h "LEN" char Filename / path
0018h
+"LEN"

1 word CRC-16 of original file

(Table 0005)
LHArc compression types
 "0" - No compression
 "1" - LZW, 4K buffer, Huffman for upper 6 bits of position
 "2" - unknown
 "3" - unknown
 "4" - LZW, Arithmetic Encoding
 "5" - LZW, Arithmetic Encoding
 "s" - LHa 2.x archive?
 "\" - LHa 2.x archive?
 "d" - LHa 2.x archive?

72.13 MIDI
The MIDI file format is used to store MIDI song data on disk. The discussed

version of the MIDI file spec is the approved MIDI Manufacturers' Associations format
version 0.06 of (3/88). The contact address is listed in the adresses file. Version 1.0 is
technically identical but the description has been rewritten. The description was made by
Dave Oppenheim, most of the text was taken right out of his document.

MIDI files contain one or more MIDI streams, with time information for each event. Song,
sequence, and track structures, tempo and time signature information, are all

 A to Z of C

803

supported. Track names and other descriptive information may be stored with the MIDI
data. This format supports multiple tracks and multiple sequences so that if the user of a
program which supports multiple tracks intends to move a file to another one, this format can
allow that to happen.
The MIDI files are block oriented files, currently only 2 block types are defined, header and
track data. Opposed to the IFF and RIFF formats, no global header is given, so that the
validation must be done by adding the different block sizes.
A MIDI file always starts with a header block, and is followed by one or more track block.

The format of the header block :

OFFSET Count TYPE Description
0000h 4 char ID='MThd'
0004h 1 dword Length of header data (=6)
0008h 1 word Format specification

0 - one, single multi-channel track
1 - one or more simultaneous tracks
2 - one or more sequentially independent

single-track patterns

000Ah 1 word Number of track blocks in the file
000Ch 1 int Unit of delta-time values.

If negative :
Absolute of high byte :

Number of frames per second.
Low byte :

Resolution within one frame
If positive, division of a quarter-note.

The track data format :
The MTrk block type is where actual song data is stored. It is simply a stream of MIDI
events (and non-MIDI events), preceded by delta-time values.

Some numbers in MTrk blocks are represented in a form called a variable-length quantity.
These numbers are represented 7 bits per byte, most significant bits first. All bytes except
the last have bit 7 set, and the last byte has bit 7 clear. If the number is between 0 and 127,
it is thus represented exactly as one byte. Since this explanation might not be too clear,
some examples :

Number (hex) Representation (hex)
 00000000
 00000040
 0000007F
 00000080
 00002000
 00003FFF
 001FFFFF
 08000000
 0FFFFFFF

00
40
7F
81 00
C0 00
FF 7F
FF FF 7F
C0 80 80 00
FF FF FF 7F

A to Z of C

804

The largest number which is allowed is 0FFFFFFF so that the variable-length representation
must fit in 32 bits in a routine to write variable-length numbers.

Each track block contains one or more MIDI events, each event consists of a delta-time and
the number of the event. The delta-time is stored as a variable-length quantity and
represents the time to delay before the following event. A delta-time of 0 means, that
the event occurs simultaneous with the previous event or occurs right at the start of a
track. The delta-time unit is specified in the header block.

Format of track information block :

OFFSET Count TYPE Description
0000h 4 char ID='MTrk'
0004h 1 dword Length of header data
0008h ? rec <delta-time>, <event>

Three types of events are defined, MIDI event, system exclusive event and meta event.
The first event in a file must specify status; delta-time itself is not an event. Meta
events are non-MIDI informations.

The format of the meta event :

OFFSET Count TYPE Description
0000h 1 byte ID=FFh
0001h 1 byte Type (<=128)
0002h ? ? Length of the data, 0 if no data

stored as variable length quantity
 ? byte Data

A few meta-events are defined. It is not required for every program to support every meta-
event. Meta-events initially defined include:

FF 00 02 ssss Sequence Number
This optional event, which must occur at the beginning of a track, before any nonzero
delta-times, and before any transmittable MIDI events, specifies the number of a sequence.

FF 01 len text Text Event
Any amount of text describing anything. It is a good idea to put a text event right at the
beginning of a track, with the name of the track, a description of its intended orchestration,
and any other information which the user wants to put there. Programs on a computer which
does not support non-ASCII characters should ignore those characters with the hi-bit set.
Meta event types 01 through 0F are reserved for various types of text events, each of
which meets the specification of text events(above) but is used for a different purpose:

FF 02 len text Copyright Notice
Contains a copyright notice as printable ASCII text. The notice should contain the characters
(C), the year of the copyright, and the owner of the copyright. If several pieces of music are in
the same MIDI file, all of the copyright notices should be placed together in this event so that

 A to Z of C

805

it will be at the beginning of the file. This event should be the first event in the first track
block, at time 0.

FF 03 len text Sequence/Track Name
If in a format 0 track, or the first track in a format 1 file, the name of the sequence.
Otherwise, the name of the track.

FF 04 len text Instrument Name
A description of the type of instrumentation to be used in that track.

FF 05 len text Lyric
A lyric to be sung. Generally, each syllable will be a separate lyric event which begins at the
event's time.

FF 06 len text Marker
Normally in a format 0 track, or the first track in a format 1 file. The name of that point in
the sequence, such as a rehearsal letter or section name ("First Verse", etc.).

FF 07 len text Cue Point
A description of something happening on a film or video screen or stage at that point in the
musical score ("Car crashes into house", "curtain opens", "she slaps his face", etc.)

FF 2F 00 End of Track
This event is not optional. It is included so that an exact ending point may be specified for the
track, so that it has an exact length, which is necessary for tracks which are looped or
concatenated.

FF 51 03 tttttt Set Tempo, in microseconds per MIDI quarter-note
This event indicates a tempo change. Another way of putting "microseconds per
quarter-note" is "24ths of a microsecond per MIDI clock". Representing tempos as time per
beat instead of beat per time allows absolutely exact dword-term synchronization with a
time-based sync protocol such as SMPTE time code or MIDI time code. This amount of
accuracy provided by this tempo resolution allows a four-minute piece at 120 beats per
minute to be accurate within 500 usec at the end of the piece. Ideally, these events should
only occur where MIDI clocks would be located Q this convention is intended to
guarantee, or at least increase the likelihood, of compatibility with other synchronization
devices so that a time signature/tempo map stored in this format may easily be transferred
to another device.

FF 54 05 hr mn se fr ff SMPTE Offset
This event, if present, designates the SMPTE time at which the track block is supposed to
start. It should be present at the beginning of the track, that is, before any nonzero
delta-times, and before any transmittable MIDI events. The hour must be encoded with
the SMPTE format, just as it is in MIDI Time Code. In a format 1 file, the SMPTE Offset must
be stored with the tempo map, and has no meaning in any of the other tracks. The ff field
contains fractional frames, in 100ths of a frame, even in SMPTE-based tracks which specify
a different frame subdivision for delta-times.

A to Z of C

806

FF 58 04 nn dd cc bb Time Signature
The time signature is expressed as four numbers. nn and dd represent the numerator and
denominator of the time signature as it would be notated. The denominator is a negative
power of two: 2 represents a quarter-note, 3 represents an eighth-note, etc. The cc
parameter expresses the number of MIDI clocks in a metronome click. The bb parameter
expresses the number of notated 32nd-notes in a MIDI quarter- note (24 MIDI Clocks).

FF 59 02 sf mi Key Signature
 sf = -7: 7 flats
 sf = -1: 1 flat
 sf = 0: key of C
 sf = 1: 1 sharp
 sf = 7: 7 sharps

 mi = 0: major key
 mi = 1: minor key

FF 7F len data Sequencer-Specific Meta-Event
 Special requirements for particular sequencers may use this event type: the first
byte or bytes of data is a manufacturer ID. However, as this is an interchange format,
growth of the spec proper is preferred to use of this event type. This type of event may be
used by a sequencer which elects to use this as its only file format; sequencers with their
established feature-specific formats should probably stick to the standard features when using
this format.

The system exclusive event is used as an escape to specify arbitrary bytes to be
transmitted. The system exclusive event has two forms, to compensate for some
manufacturer-specific modes, the F7h event is used if a F0h is to be transmitted. Each system
exclusive event must end with an F7h event.

The format of a system exclusive event :

OFFSET Count TYPE Description
0000h 1 byte ID=F0h,ID=F7h
0001h ? ? Length as variable length qty.
 ? byte bytes to be transmitted

72.14 PCX
The PCX files are created by the programs of the ZSoft Paintbrush family and the

FRIEZE package by the same manufacturer. A PCX file contains only one image, the data for
this image and possibly palette information for this image. The encoding scheme used for
PCX encoding is a simple RLE mechanism, see ALGRTHMS.txt for further information. A PCX
image is stored from the upper scan line to the lower scan line.

The size of a decoded scan line is always an even number, thus one additional
byte should always be allocated for the decoding buffer.

The header has a fixed size of 128 bytes and looks like this :

